Integrating explainable AI and causal inference to unveil regional air quality drivers in China

IF 8.4 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhiyuan Fu , Xiao Yang , Yike Ma , Yuhang Sun , Tianlian Wang
{"title":"Integrating explainable AI and causal inference to unveil regional air quality drivers in China","authors":"Zhiyuan Fu ,&nbsp;Xiao Yang ,&nbsp;Yike Ma ,&nbsp;Yuhang Sun ,&nbsp;Tianlian Wang","doi":"10.1016/j.jenvman.2025.126270","DOIUrl":null,"url":null,"abstract":"<div><div>Air pollution poses a pressing global public health challenge, demanding a comprehensive understanding of its causes and evolving dynamics to inform effective control strategies. In China, significant spatial heterogeneity complicates the national air quality improvement process. Different regions exhibit varying pollution drivers, which makes uniform governance approaches less effective. Addressing this complexity requires a framework capable of capturing localized causal mechanisms. This study introduces the CADEPT (Causal Analysis–Detection–Explanation–Prediction–Threshold) multi-scale causal inference framework. Using nationwide air quality monitoring data from 2014 to 2022, the study integrates urban, socio-economic, and climatic datasets. It systematically investigates the driving forces and future evolution of the Air Quality Index (AQI) through four major stages: spatial heterogeneity detection, causal and interpretable inference, threshold identification, and scenario-based prediction. The results reveal the following key findings: (1) Local Moran's I detects significant spatial clustering of AQI, while spatial heterogeneity analysis uncovers region-specific influences from climate, emissions, and industrial structures. (2) Interpretability analysis, based on SHAP and TabPFN, uncovers nonlinear and region-specific contributions of key variables to AQI, highlighting climate's mitigating role and industry's aggravating effect. (3) Causal inference quantifies the true impacts of dominant factors, confirming that increases in temperature and precipitation improve air quality, while SO<sub>2</sub> emissions and industrial expansion worsen it. (4) Threshold analysis identifies critical response intervals, highlighting a synergistic amplification effect between meteorological conditions and emission factors. (5) Scenario simulations suggest that promoting low-carbon transitions and coordinated emission reductions are essential for achieving sustained nationwide air quality improvements.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"390 ","pages":"Article 126270"},"PeriodicalIF":8.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725022467","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution poses a pressing global public health challenge, demanding a comprehensive understanding of its causes and evolving dynamics to inform effective control strategies. In China, significant spatial heterogeneity complicates the national air quality improvement process. Different regions exhibit varying pollution drivers, which makes uniform governance approaches less effective. Addressing this complexity requires a framework capable of capturing localized causal mechanisms. This study introduces the CADEPT (Causal Analysis–Detection–Explanation–Prediction–Threshold) multi-scale causal inference framework. Using nationwide air quality monitoring data from 2014 to 2022, the study integrates urban, socio-economic, and climatic datasets. It systematically investigates the driving forces and future evolution of the Air Quality Index (AQI) through four major stages: spatial heterogeneity detection, causal and interpretable inference, threshold identification, and scenario-based prediction. The results reveal the following key findings: (1) Local Moran's I detects significant spatial clustering of AQI, while spatial heterogeneity analysis uncovers region-specific influences from climate, emissions, and industrial structures. (2) Interpretability analysis, based on SHAP and TabPFN, uncovers nonlinear and region-specific contributions of key variables to AQI, highlighting climate's mitigating role and industry's aggravating effect. (3) Causal inference quantifies the true impacts of dominant factors, confirming that increases in temperature and precipitation improve air quality, while SO2 emissions and industrial expansion worsen it. (4) Threshold analysis identifies critical response intervals, highlighting a synergistic amplification effect between meteorological conditions and emission factors. (5) Scenario simulations suggest that promoting low-carbon transitions and coordinated emission reductions are essential for achieving sustained nationwide air quality improvements.

Abstract Image

整合可解释的人工智能和因果推理,揭示中国区域空气质量驱动因素
空气污染是一项紧迫的全球公共卫生挑战,需要全面了解其原因和不断变化的动态,以便为有效的控制战略提供信息。在中国,显著的空间异质性使全国空气质量改善过程复杂化。不同地区表现出不同的污染驱动因素,这使得统一的治理方法效果不佳。处理这种复杂性需要一个能够捕获局部因果机制的框架。本研究引入了CADEPT(因果分析-检测-解释-预测-阈值)多尺度因果推理框架。该研究利用2014年至2022年的全国空气质量监测数据,整合了城市、社会经济和气候数据集。通过空间异质性检测、因果和可解释推断、阈值识别和基于场景的预测四个主要阶段,系统地研究了空气质量指数(AQI)的驱动力和未来演变。结果表明:(1)区域Moran’s I检测到空气质量的空间聚类,而空间异质性分析揭示了气候、排放和产业结构对空气质量的区域影响。(2)基于SHAP和TabPFN的可解释性分析揭示了关键变量对AQI的非线性和区域特异性贡献,突出了气候的缓解作用和工业的加重作用。(3)因果推理量化了主导因素的真实影响,证实了气温和降水的增加改善了空气质量,而SO2排放和工业扩张使空气质量恶化。(4)阈值分析确定了临界响应区间,突出了气象条件与排放因子之间的协同放大效应。(5)情景模拟表明,促进低碳转型和协调减排是实现全国空气质量持续改善的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信