Meng-Qi Tuo, Jia-Xin Fan, De-Cong Qiao, Di Ma, Wan-Lin Zhao, Zi-Yue Hu, Bo Liu, Jiu-Fu Lu
{"title":"Solvent/pH-directed synthesis of Mn coordination polymers for enhanced photoelectrocatalytic water splitting","authors":"Meng-Qi Tuo, Jia-Xin Fan, De-Cong Qiao, Di Ma, Wan-Lin Zhao, Zi-Yue Hu, Bo Liu, Jiu-Fu Lu","doi":"10.1016/j.jphotochem.2025.116586","DOIUrl":null,"url":null,"abstract":"<div><div>As global energy demands escalate, hydrogen energy has emerged as a pivotal clean energy source. However, developing high-performance, low-cost catalysts for the oxygen evolution reaction (OER) remains a critical challenge. Herein, the controlled assembly of ligand 4-CPCA with manganese chloride through pH modulation and solvent regulation yields three distinct coordination architectures: a zero-dimensional Mn(II) monomer {Mn(H₂O)₂[H(4-CPCA)]₂}·2H₂O (<strong>SNUT-18</strong>), a one-dimensional chain (1D) [Mn(H₂O)₃(4-CPCA)]ₙ (<strong>SNUT-33</strong>), and a two-dimensional bilayer (2D) [Mn(H₂O)₂(4-CPCA)·H₂O]ₙ (<strong>SNUT-34</strong>). (4-CPCA = 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid.; DMA = dimethylacetamide). Structural characterization confirmed the crystal structure, while solid-state UV–vis diffuse reflectance spectroscopy (UV–Vis DRS) and Mott-Schottky (M-S) analysis identified their n-type semiconductor behavior. Electrocatalytic evaluation revealed that <strong>SNUT-18</strong>, <strong>SNUT-33</strong>, and <strong>SNUT-34</strong> exhibited significantly reduced overpotentials, lower Tafel slopes, and decreased electrochemical impedance Under simulated solar irradiation (300 W Xe lamp). This work highlights the critical role of structural dimensionality in optimizing photoelectrocatalytic OER activity.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"469 ","pages":"Article 116586"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025003260","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As global energy demands escalate, hydrogen energy has emerged as a pivotal clean energy source. However, developing high-performance, low-cost catalysts for the oxygen evolution reaction (OER) remains a critical challenge. Herein, the controlled assembly of ligand 4-CPCA with manganese chloride through pH modulation and solvent regulation yields three distinct coordination architectures: a zero-dimensional Mn(II) monomer {Mn(H₂O)₂[H(4-CPCA)]₂}·2H₂O (SNUT-18), a one-dimensional chain (1D) [Mn(H₂O)₃(4-CPCA)]ₙ (SNUT-33), and a two-dimensional bilayer (2D) [Mn(H₂O)₂(4-CPCA)·H₂O]ₙ (SNUT-34). (4-CPCA = 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid.; DMA = dimethylacetamide). Structural characterization confirmed the crystal structure, while solid-state UV–vis diffuse reflectance spectroscopy (UV–Vis DRS) and Mott-Schottky (M-S) analysis identified their n-type semiconductor behavior. Electrocatalytic evaluation revealed that SNUT-18, SNUT-33, and SNUT-34 exhibited significantly reduced overpotentials, lower Tafel slopes, and decreased electrochemical impedance Under simulated solar irradiation (300 W Xe lamp). This work highlights the critical role of structural dimensionality in optimizing photoelectrocatalytic OER activity.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.