Use of artificial intelligence processing tools to evaluate qualitative data: Student researchers compared to faculty researchers

IF 1.3 Q3 EDUCATION, SCIENTIFIC DISCIPLINES
Shanna K. O'Connor , Erin E. Miller , Alyssa R. Zweifel , Danielle M. Schievelbein , Anjali R. Parmar , James W. Amell
{"title":"Use of artificial intelligence processing tools to evaluate qualitative data: Student researchers compared to faculty researchers","authors":"Shanna K. O'Connor ,&nbsp;Erin E. Miller ,&nbsp;Alyssa R. Zweifel ,&nbsp;Danielle M. Schievelbein ,&nbsp;Anjali R. Parmar ,&nbsp;James W. Amell","doi":"10.1016/j.cptl.2025.102418","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Artificial intelligence (AI) has emerged as a promising tool to support qualitative data analysis, yet its role in faculty-led studies that incorporate student researchers remains under investigation. This study examined differences in inductive thematic analysis generated by student and faculty researchers using AI compared to traditional faculty-led coding.</div></div><div><h3>Methods</h3><div>Three qualitative datasets were analyzed using OpenAI's ChatGPT by faculty and student researchers.</div></div><div><h3>Results</h3><div>Findings showed AI-assisted analyses identified most themes accurately, though faculty-generated AI results aligned more closely with expert-reviewed themes than student-generated AI results.</div></div><div><h3>Conclusions</h3><div>AI may be a valuable tool to enhance efficiency particularly in initial evaluation of qualitative data.</div></div>","PeriodicalId":47501,"journal":{"name":"Currents in Pharmacy Teaching and Learning","volume":"17 10","pages":"Article 102418"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Currents in Pharmacy Teaching and Learning","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187712972500139X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Artificial intelligence (AI) has emerged as a promising tool to support qualitative data analysis, yet its role in faculty-led studies that incorporate student researchers remains under investigation. This study examined differences in inductive thematic analysis generated by student and faculty researchers using AI compared to traditional faculty-led coding.

Methods

Three qualitative datasets were analyzed using OpenAI's ChatGPT by faculty and student researchers.

Results

Findings showed AI-assisted analyses identified most themes accurately, though faculty-generated AI results aligned more closely with expert-reviewed themes than student-generated AI results.

Conclusions

AI may be a valuable tool to enhance efficiency particularly in initial evaluation of qualitative data.
使用人工智能处理工具来评估定性数据:学生研究人员与教师研究人员的比较
人工智能(AI)已经成为支持定性数据分析的有前途的工具,但它在包括学生研究人员的教师主导的研究中的作用仍在调查中。本研究考察了学生和教师研究人员使用人工智能生成的归纳主题分析与传统的教师主导编码的差异。方法采用OpenAI的ChatGPT软件对教师和学生的三个定性数据集进行分析。研究结果显示,人工智能辅助分析准确地识别了大多数主题,尽管教师生成的人工智能结果比学生生成的人工智能结果更接近专家审查的主题。结论sai是提高定性资料初步评价效率的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Currents in Pharmacy Teaching and Learning
Currents in Pharmacy Teaching and Learning EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
2.10
自引率
16.70%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信