{"title":"Frequency-dependent seismic radiation process of the 2024 Noto Peninsula earthquake from teleseismic P-wave back-projection","authors":"Kotaro Tarumi , Kazunori Yoshizawa","doi":"10.1016/j.epsl.2025.119509","DOIUrl":null,"url":null,"abstract":"<div><div>A large devastating earthquake of Mw 7.5 struck the Noto Peninsula, Japan, on January 1st, 2024. Persistent seismic swarms have preceded the main rupture around the hypocenter since 2020, likely driven by crustal fluids migrating upward from the lower crust. In this study, we investigated the frequency-dependent seismic radiation process using multi-frequency teleseismic P-wave back projection. The resulting source process reveals complex frequency-dependent behavior, which can be divided into four episodes. The initial episode lasts 15–20 s, characterized by high-frequency energy preceding low-frequency radiation. The second episode is marked by intense high-frequency P-wave emission with the absence of low-frequency signals. Then, intensive low-frequency P-waves are radiated from the source region, with ruptures propagating bilaterally from the hypocentral area toward the southwestern inland (third episode) and northeastern offshore (fourth episode) regions. The fluid-rich condition near the hypocenter likely plays an important role in controlling fault rupture, contributing to the observed complex rupture processes. The intricate fault geometry around the source region may have also contributed to the characteristic frequency-dependence of P-wave radiation during this earthquake.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"666 ","pages":"Article 119509"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X25003073","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A large devastating earthquake of Mw 7.5 struck the Noto Peninsula, Japan, on January 1st, 2024. Persistent seismic swarms have preceded the main rupture around the hypocenter since 2020, likely driven by crustal fluids migrating upward from the lower crust. In this study, we investigated the frequency-dependent seismic radiation process using multi-frequency teleseismic P-wave back projection. The resulting source process reveals complex frequency-dependent behavior, which can be divided into four episodes. The initial episode lasts 15–20 s, characterized by high-frequency energy preceding low-frequency radiation. The second episode is marked by intense high-frequency P-wave emission with the absence of low-frequency signals. Then, intensive low-frequency P-waves are radiated from the source region, with ruptures propagating bilaterally from the hypocentral area toward the southwestern inland (third episode) and northeastern offshore (fourth episode) regions. The fluid-rich condition near the hypocenter likely plays an important role in controlling fault rupture, contributing to the observed complex rupture processes. The intricate fault geometry around the source region may have also contributed to the characteristic frequency-dependence of P-wave radiation during this earthquake.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.