{"title":"Metagenomic and metabolomic insights into microalgal-bacterial symbiosis under low carbon-to-nitrogen ratios","authors":"Jiaoyang Tian, Jingang Hu, Yi Xiong, Xiangyi Deng, Yun Fang, Guowei Wang, Ruan Chi, Chunqiao Xiao","doi":"10.1016/j.biortech.2025.132849","DOIUrl":null,"url":null,"abstract":"<div><div>Microalgal-bacterial symbiotic system (MBSS) is expected to efficiently treat ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N) wastewater at low carbon-to-nitrogen ratio (CNR). In this study, MBSS was constructed and operated at CNRs of 0, 2, and 4 for 36 days, named as L (low CNR), M (medium CNR), and H (high CNR). Microbial interaction mechanisms were explored through metagenomics and non-targeted metabolomics. The average NH<sub>4</sub><sup>+</sup>-N removal efficiencies of L, M, and H were 9.2 ± 4.3 %, 33.6 ± 10.9 %, and 51.6 ± 14.1 %, respectively. CNR significantly influenced NH<sub>4</sub><sup>+</sup>-N removal. Metagenomics and metabolomics showed that bacteria dominate MBSS, with phylum Pseudomonadota having a large advantage. Addition of simple organic carbon sources may inhibit the generation of complex organic compounds by microalgae, consequently leading to bacteria utilizing simple carbon sources. Certain key microorganisms, genes, and metabolites respond to different CNRs to regulate MBSS performance. This study provides new insights into MBSS nitrogen removal at low CNR.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"434 ","pages":"Article 132849"},"PeriodicalIF":9.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425008156","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgal-bacterial symbiotic system (MBSS) is expected to efficiently treat ammonia nitrogen (NH4+-N) wastewater at low carbon-to-nitrogen ratio (CNR). In this study, MBSS was constructed and operated at CNRs of 0, 2, and 4 for 36 days, named as L (low CNR), M (medium CNR), and H (high CNR). Microbial interaction mechanisms were explored through metagenomics and non-targeted metabolomics. The average NH4+-N removal efficiencies of L, M, and H were 9.2 ± 4.3 %, 33.6 ± 10.9 %, and 51.6 ± 14.1 %, respectively. CNR significantly influenced NH4+-N removal. Metagenomics and metabolomics showed that bacteria dominate MBSS, with phylum Pseudomonadota having a large advantage. Addition of simple organic carbon sources may inhibit the generation of complex organic compounds by microalgae, consequently leading to bacteria utilizing simple carbon sources. Certain key microorganisms, genes, and metabolites respond to different CNRs to regulate MBSS performance. This study provides new insights into MBSS nitrogen removal at low CNR.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.