Two new families of linear codes with five Lee-weights over Fq+uFq and their Gray images

IF 0.7 3区 数学 Q2 MATHEMATICS
Yun Ding, Shixin Zhu
{"title":"Two new families of linear codes with five Lee-weights over Fq+uFq and their Gray images","authors":"Yun Ding,&nbsp;Shixin Zhu","doi":"10.1016/j.disc.2025.114643","DOIUrl":null,"url":null,"abstract":"<div><div>Linear codes with few weights have many applications in secret sharing, strongly regular graphs and association schemes. In this paper, by taking proper defining sets, we first present two new infinite families of linear codes with five Lee-weights over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>+</mo><mi>u</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and exactly determine the complete weight enumerators of their Gray images. As an application, we also show that Gray images of the two families of linear codes are two new infinite families of minimal linear codes with <span><math><mfrac><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>min</mi></mrow></msub></mrow><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>max</mi></mrow></msub></mrow></mfrac><mo>&lt;</mo><mfrac><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac></math></span>, where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>min</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> denote the minimum and maximum nonzero weights in the code, respectively.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114643"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002511","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Linear codes with few weights have many applications in secret sharing, strongly regular graphs and association schemes. In this paper, by taking proper defining sets, we first present two new infinite families of linear codes with five Lee-weights over Fq+uFq and exactly determine the complete weight enumerators of their Gray images. As an application, we also show that Gray images of the two families of linear codes are two new infinite families of minimal linear codes with wminwmax<q1q, where wmin and wmax denote the minimum and maximum nonzero weights in the code, respectively.
Fq+uFq上具有5个lee权值的两个新的线性码族及其灰度图像
小权重线性码在秘密共享、强正则图和关联方案中有着广泛的应用。本文首先利用适当的定义集,在Fq+uFq上给出了两个新的具有五个lee -权的无限族线性码,并精确地确定了它们的灰度图像的完全权枚举数。作为应用,我们还证明了两族线性码的灰度图像是两个新的无限族最小线性码,具有wminwmax<;q−1q,其中wmin和wmax分别表示码中的最小和最大非零权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信