Fractional Lane-Emden Hamiltonian systems

IF 1.2 3区 数学 Q1 MATHEMATICS
Ignacio Ceresa Dussel, Julián Fernández Bonder, Nicolas Saintier, Ariel Salort
{"title":"Fractional Lane-Emden Hamiltonian systems","authors":"Ignacio Ceresa Dussel,&nbsp;Julián Fernández Bonder,&nbsp;Nicolas Saintier,&nbsp;Ariel Salort","doi":"10.1016/j.jmaa.2025.129813","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, our interest lies in proving the existence of solutions to the following Fractional Lane-Emden Hamiltonian system:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi></mrow></msup><mi>v</mi><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>u</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mtd><mtd><mtext>in </mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>v</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> The method, that can be traced back to the work of De Figueiredo and Felmer <span><span>[5]</span></span>, is flexible enough to deal with more general nonlocal operators and make use of a combination of fractional order Sobolev spaces together with functional calculus for self-adjoint operators.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 1","pages":"Article 129813"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005943","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, our interest lies in proving the existence of solutions to the following Fractional Lane-Emden Hamiltonian system:{(Δ)su=Hv(x,u,v)in Ω,(Δ)sv=Hu(x,u,v)in Ω,u=v=0in RnΩ. The method, that can be traced back to the work of De Figueiredo and Felmer [5], is flexible enough to deal with more general nonlocal operators and make use of a combination of fractional order Sobolev spaces together with functional calculus for self-adjoint operators.
分数阶Lane-Emden hamilton系统
在这项工作中,我们的兴趣在于证明以下分数阶雷恩-埃姆登哈密顿系统解的存在性:{(−Δ)su=Hv(x,u,v)在Ω中,(−Δ)sv=Hu(x,u,v)在Ω中,u=v=0在Rn∈Ω中。该方法可以追溯到De Figueiredo和Felmer[5]的工作,它足够灵活,可以处理更一般的非局部算子,并利用分数阶Sobolev空间与自伴随算子的泛函演算的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信