{"title":"Topology optimization for multi-axis additive manufacturing considering overhang and anisotropy","authors":"Seungheon Shin, Byeonghyeon Goh, Youngtaek Oh, Hayoung Chung","doi":"10.1016/j.ijmecsci.2025.110443","DOIUrl":null,"url":null,"abstract":"<div><div>Topology optimization produces designs with intricate geometries and complex topologies that require advanced manufacturing techniques such as additive manufacturing (AM). However, insufficient consideration of manufacturability during the optimization process often results in design modifications that compromise the optimality of the design. While multi-axis AM enhances manufacturability by enabling flexible material deposition in multiple orientations, challenges remain in addressing overhang structures, potential collisions, and material anisotropy caused by varying build orientations. To overcome these limitations, this study proposes a novel space–time topology optimization framework for multi-axis AM. The framework employs a pseudo-time field as a design variable to represent the fabrication sequence, simultaneously optimizing the density distribution and build orientations. This approach ensures that the overhang angles remain within manufacturable limits while also mitigating collisions. Moreover, by incorporating material anisotropy induced by diverse build orientations into the design process, the framework can take the scan path-dependent structural behaviors into account during the design optimization. Numerical examples demonstrate that the proposed framework effectively derives feasible and optimal designs that account for the manufacturing characteristics of multi-axis AM.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"301 ","pages":"Article 110443"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325005284","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Topology optimization produces designs with intricate geometries and complex topologies that require advanced manufacturing techniques such as additive manufacturing (AM). However, insufficient consideration of manufacturability during the optimization process often results in design modifications that compromise the optimality of the design. While multi-axis AM enhances manufacturability by enabling flexible material deposition in multiple orientations, challenges remain in addressing overhang structures, potential collisions, and material anisotropy caused by varying build orientations. To overcome these limitations, this study proposes a novel space–time topology optimization framework for multi-axis AM. The framework employs a pseudo-time field as a design variable to represent the fabrication sequence, simultaneously optimizing the density distribution and build orientations. This approach ensures that the overhang angles remain within manufacturable limits while also mitigating collisions. Moreover, by incorporating material anisotropy induced by diverse build orientations into the design process, the framework can take the scan path-dependent structural behaviors into account during the design optimization. Numerical examples demonstrate that the proposed framework effectively derives feasible and optimal designs that account for the manufacturing characteristics of multi-axis AM.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.