Wen-Fang Tang , Hui-Ping Tsai , Yuan-Fan Chin , Shan-Ko Tsai , Cheng-Chin Lin , Son Tung Ngo , Po-Huang Liang , Jia-Rong Jheng , Chung-Fan Hsieh , Jin-Ching Lee , Yu-Hsiu Chang , Tein-Yao Chang , Chia-Yi Lin , Guan-Hua Lin , Jie-Yun Cai , Yu-Li Chen , Yuan-Siao Chen , Ping-Cheng Liu , Chuen-Mi Yang , Tolou Shadbahr , Jim-Tong Horng
{"title":"Targeting SARS-CoV-2 RNA-dependent RNA polymerase with the coumarin derivative BPR2-D2: Evidence from cell-based and enzymatic studies","authors":"Wen-Fang Tang , Hui-Ping Tsai , Yuan-Fan Chin , Shan-Ko Tsai , Cheng-Chin Lin , Son Tung Ngo , Po-Huang Liang , Jia-Rong Jheng , Chung-Fan Hsieh , Jin-Ching Lee , Yu-Hsiu Chang , Tein-Yao Chang , Chia-Yi Lin , Guan-Hua Lin , Jie-Yun Cai , Yu-Li Chen , Yuan-Siao Chen , Ping-Cheng Liu , Chuen-Mi Yang , Tolou Shadbahr , Jim-Tong Horng","doi":"10.1016/j.biopha.2025.118252","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid mutation rate of SARS-CoV-2 highlights the urgent need for continuous drug development to enhance both efficacy and safety. BPR2-D2, an angular coumarin derivative, has previously shown notable anti-influenza activity and broad-spectrum inhibitory effects against RNA viruses. In this study, we found that BPR2-D2 exhibits potent antiviral activity against multiple SARS-CoV-2 variants, including several variants of concern, at nanomolar concentrations. Notably, BPR2-D2 effectively disrupted viral RNA and protein synthesis in infected cells while mitigating pro-inflammatory cytokines triggered by viral replication. Our investigation of SARS-CoV-2 RdRp activity employed <em>in silico</em> analyses, including molecular docking, dynamic simulations, and binding free energy calculations. BPR2-D2 demonstrated superior binding affinity to the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 compared to remdesivir. Additionally, it exhibited an increased synergistic inhibitory activity against the viral enzyme when combined with remdesivir. Both cell-based and <em>in vitro</em> enzyme-based RdRp reporter assays validated BPR2-D2’s capacity to inhibit SARS-CoV-2 RdRp activity. The potential synergistic interaction between BPR2-D2 and remdesivir was investigated using cell-based combination assays. The results revealed a synergistic effect in reducing SARS-CoV-2 RNA synthesis, consistent with the <em>in silico</em> analysis. Collectively, these findings suggest that BPR2-D2, a repurposed small-molecule compound, effectively inhibits SARS-CoV-2 by modulating its RdRp function. This positions BPR2-D2 as a promising novel antiviral agent, while also providing insights into the complex molecular mechanisms underlying viral replication.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"189 ","pages":"Article 118252"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225004469","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid mutation rate of SARS-CoV-2 highlights the urgent need for continuous drug development to enhance both efficacy and safety. BPR2-D2, an angular coumarin derivative, has previously shown notable anti-influenza activity and broad-spectrum inhibitory effects against RNA viruses. In this study, we found that BPR2-D2 exhibits potent antiviral activity against multiple SARS-CoV-2 variants, including several variants of concern, at nanomolar concentrations. Notably, BPR2-D2 effectively disrupted viral RNA and protein synthesis in infected cells while mitigating pro-inflammatory cytokines triggered by viral replication. Our investigation of SARS-CoV-2 RdRp activity employed in silico analyses, including molecular docking, dynamic simulations, and binding free energy calculations. BPR2-D2 demonstrated superior binding affinity to the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 compared to remdesivir. Additionally, it exhibited an increased synergistic inhibitory activity against the viral enzyme when combined with remdesivir. Both cell-based and in vitro enzyme-based RdRp reporter assays validated BPR2-D2’s capacity to inhibit SARS-CoV-2 RdRp activity. The potential synergistic interaction between BPR2-D2 and remdesivir was investigated using cell-based combination assays. The results revealed a synergistic effect in reducing SARS-CoV-2 RNA synthesis, consistent with the in silico analysis. Collectively, these findings suggest that BPR2-D2, a repurposed small-molecule compound, effectively inhibits SARS-CoV-2 by modulating its RdRp function. This positions BPR2-D2 as a promising novel antiviral agent, while also providing insights into the complex molecular mechanisms underlying viral replication.
期刊介绍:
Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.