{"title":"Computing the inverse Butler–Volmer relationship","authors":"L.K. Bieniasz","doi":"10.1016/j.jelechem.2025.119206","DOIUrl":null,"url":null,"abstract":"<div><div>A detailed discussion is presented, of the problem of computing the inverse Butler-Volmer (electrode potential vs. current) relationship efficiently and with a high accuracy. A number of limiting cases of this problem is identified, and approximations valid for these cases are deduced. A hybrid algorithm is constructed, that combines the various approximations and improves them by Newton iterations. The algorithm is implemented in C++, employing extended precision variables. It is found that the modulus of the relative error of the calculated electrode potential is predominantly close to ca. <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>18</mn></mrow></msup></mrow></math></span> and locally increases to ca. <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>15</mn></mrow></msup></mrow></math></span>. However, there are also well defined and unavoidable (albeit rather unlikely from the physical point of view) special situations in which the relative error may approach 100%, independently of the numerical algorithm used. The C++ code elaborated is made available. The code can be used for simulations of controlled current experiments, and for the analysis of diverse experimental data in electroanalytical and electrochemical engineering studies. An example application of the code, to the calculation of chronopotentiograms for a quasi-reversible charge transfer at a planar electrode, is also presented.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"994 ","pages":"Article 119206"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665725002802","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed discussion is presented, of the problem of computing the inverse Butler-Volmer (electrode potential vs. current) relationship efficiently and with a high accuracy. A number of limiting cases of this problem is identified, and approximations valid for these cases are deduced. A hybrid algorithm is constructed, that combines the various approximations and improves them by Newton iterations. The algorithm is implemented in C++, employing extended precision variables. It is found that the modulus of the relative error of the calculated electrode potential is predominantly close to ca. and locally increases to ca. . However, there are also well defined and unavoidable (albeit rather unlikely from the physical point of view) special situations in which the relative error may approach 100%, independently of the numerical algorithm used. The C++ code elaborated is made available. The code can be used for simulations of controlled current experiments, and for the analysis of diverse experimental data in electroanalytical and electrochemical engineering studies. An example application of the code, to the calculation of chronopotentiograms for a quasi-reversible charge transfer at a planar electrode, is also presented.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.