Formation and construction of a shock wave for 1-D n × n strictly hyperbolic conservation laws with small smooth initial data

IF 2.1 1区 数学 Q1 MATHEMATICS
Min Ding , Huicheng Yin
{"title":"Formation and construction of a shock wave for 1-D n × n strictly hyperbolic conservation laws with small smooth initial data","authors":"Min Ding ,&nbsp;Huicheng Yin","doi":"10.1016/j.matpur.2025.103754","DOIUrl":null,"url":null,"abstract":"<div><div>Under the genuinely nonlinear assumption for 1-D <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> strictly hyperbolic conservation laws, we investigate the geometric blowup of smooth solutions and the development of singularities when the small initial data fulfill the generic nondegenerate condition. At first, near the unique blowup point we give a precise description on the space-time blowup rate of the smooth solution and meanwhile derive the cusp singularity structure of characteristic envelope. These results are established through extending the smooth solution of the completely nonlinear blowup system across the blowup time. Subsequently, by utilizing a new form on the resulting 1-D strictly hyperbolic system with <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> good components and one bad component, together with the choice of an efficient iterative scheme and some involved analyses, a weak entropy shock wave starting from the blowup point is constructed. As a byproduct, our result can be applied to the shock formation and construction for the 2-D supersonic steady compressible full Euler equations (<span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> system), 1-D MHD equations (<span><math><mn>5</mn><mo>×</mo><mn>5</mn></math></span> system), 1-D elastic wave equations (<span><math><mn>6</mn><mo>×</mo><mn>6</mn></math></span> system) and 1-D full ideal compressible MHD equations (<span><math><mn>7</mn><mo>×</mo><mn>7</mn></math></span> system).</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"204 ","pages":"Article 103754"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000984","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Under the genuinely nonlinear assumption for 1-D n×n strictly hyperbolic conservation laws, we investigate the geometric blowup of smooth solutions and the development of singularities when the small initial data fulfill the generic nondegenerate condition. At first, near the unique blowup point we give a precise description on the space-time blowup rate of the smooth solution and meanwhile derive the cusp singularity structure of characteristic envelope. These results are established through extending the smooth solution of the completely nonlinear blowup system across the blowup time. Subsequently, by utilizing a new form on the resulting 1-D strictly hyperbolic system with (n1) good components and one bad component, together with the choice of an efficient iterative scheme and some involved analyses, a weak entropy shock wave starting from the blowup point is constructed. As a byproduct, our result can be applied to the shock formation and construction for the 2-D supersonic steady compressible full Euler equations (4×4 system), 1-D MHD equations (5×5 system), 1-D elastic wave equations (6×6 system) and 1-D full ideal compressible MHD equations (7×7 system).
具有小光滑初始数据的1-D n × 严格双曲守恒律激波的形成和构造
在一维n×n严格双曲守恒律的真正非线性假设下,研究了小初始数据满足一般非退化条件时光滑解的几何爆破和奇点的发展。首先,在唯一爆破点附近给出了光滑解的时空爆破率的精确描述,同时导出了特征包络的尖点奇点结构。这些结果是通过扩展完全非线性爆破系统在爆破时间上的光滑解而得到的。随后,利用所得到的具有(n−1)个好分量和1个坏分量的1- d严格双曲系统的一种新形式,结合有效迭代格式的选择和相关分析,构造了一个从爆炸点出发的弱熵激波。作为副产物,我们的结果可以应用于二维超声速稳定可压缩全欧拉方程(4×4系统)、一维MHD方程(5×5系统)、一维弹性波动方程(6×6系统)和一维全理想可压缩MHD方程(7×7系统)的激波形成和构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信