A novel method to predict a local Nusselt number profile on the hemispherical surface under air jet impingement cooling

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Suraj Kumar , Veerendra Kumar , B. Premachandran
{"title":"A novel method to predict a local Nusselt number profile on the hemispherical surface under air jet impingement cooling","authors":"Suraj Kumar ,&nbsp;Veerendra Kumar ,&nbsp;B. Premachandran","doi":"10.1016/j.applthermaleng.2025.127158","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on accurately estimating the local Nusselt number profile (<span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span>) on the hot surface of a convex hemispherical block under air jet impingement cooling using the inverse technique such as Bayesian inverse approach with the Metropolis Hastings–Markov Chain Monte Carlo (MH-MCMC) algorithm, which is critical for applications like thermal treatment of materials, electronics cooling, cooling of turbine blade leading-edge, rocket launcher cooling, rotary cement kiln shell cooling, casting industry processes, etc. To accurately evaluate the local Nusselt number profile on the hot hemispherical surface, the unknown parameters <span><math><mi>a</mi></math></span>, <span><math><mi>b</mi></math></span>, and <span><math><mi>c</mi></math></span> of the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile were predicted using the proposed inverse technique combined with artificial neural networks and steady-state temperatures measured on the bottom surface of the hemispherical block. The local Nusselt number profile was predicted as <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>0703</mn><mi>R</mi><msup><mrow><mi>e</mi></mrow><mrow><mn>0</mn><mo>.</mo><mn>78</mn></mrow></msup><mi>e</mi><mi>x</mi><mi>p</mi><mrow><mo>[</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>1747</mn><msup><mrow><mrow><mo>(</mo><mi>s</mi><mo>/</mo><mi>d</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>.</mo><mn>001</mn></mrow></msup><mo>]</mo></mrow></mrow></math></span> for the <span><math><mrow><mi>L</mi><mo>/</mo><mi>d</mi></mrow></math></span> ratio of 6 and Reynolds numbers ranging from 23<!--> <!-->000 to 50<!--> <!-->000. Surrogate and synthetic temperature data were initially employed to assess the effectiveness of the inverse method. The estimated parameters closely matched the target values with low percentage deviations, proving the robustness of the inverse method. The local Nusselt number predicted was then compared against local Nusselt number obtained from experiments and <span><math><mrow><msup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>f</mi></mrow></math></span> turbulence model simulations, showing strong agreement with the <span><math><mrow><mi>N</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>s</mi></mrow></msub></mrow></math></span> profile estimated using the Bayesian with MH-MCMC approach. Simulated temperature distributions were also analyzed to understand the thermal behavior on the hemispherical surface under various Reynolds numbers. The findings highlight that the proposed inverse methodology accurately predicts the local Nusselt number profile on the hot hemispherical surface under air jet impingement conditions, with potential applications in optimizing cooling processes in various industrial systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"278 ","pages":"Article 127158"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125017508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on accurately estimating the local Nusselt number profile (Nus) on the hot surface of a convex hemispherical block under air jet impingement cooling using the inverse technique such as Bayesian inverse approach with the Metropolis Hastings–Markov Chain Monte Carlo (MH-MCMC) algorithm, which is critical for applications like thermal treatment of materials, electronics cooling, cooling of turbine blade leading-edge, rocket launcher cooling, rotary cement kiln shell cooling, casting industry processes, etc. To accurately evaluate the local Nusselt number profile on the hot hemispherical surface, the unknown parameters a, b, and c of the Nus profile were predicted using the proposed inverse technique combined with artificial neural networks and steady-state temperatures measured on the bottom surface of the hemispherical block. The local Nusselt number profile was predicted as Nus=0.0703Re0.78exp[0.1747(s/d)1.001] for the L/d ratio of 6 and Reynolds numbers ranging from 23 000 to 50 000. Surrogate and synthetic temperature data were initially employed to assess the effectiveness of the inverse method. The estimated parameters closely matched the target values with low percentage deviations, proving the robustness of the inverse method. The local Nusselt number predicted was then compared against local Nusselt number obtained from experiments and v2f turbulence model simulations, showing strong agreement with the Nus profile estimated using the Bayesian with MH-MCMC approach. Simulated temperature distributions were also analyzed to understand the thermal behavior on the hemispherical surface under various Reynolds numbers. The findings highlight that the proposed inverse methodology accurately predicts the local Nusselt number profile on the hot hemispherical surface under air jet impingement conditions, with potential applications in optimizing cooling processes in various industrial systems.
一种预测空气射流冲击冷却下半球面局部努塞尔数分布的新方法
本文主要研究了利用Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC)算法的贝叶斯逆方法等逆技术,精确估计空气射流冲击冷却下凸半球形块体热表面的局部努塞尔数分布(Nus),这对于材料热处理、电子冷却、涡轮叶片前缘冷却、火箭发射器冷却、水泥回转窑壳体冷却等应用至关重要。铸造工业工艺等。为了准确地评估热半球表面上的局部努塞尔数分布,利用人工神经网络和半球块底表面的稳态温度相结合的反演技术预测了Nus分布的未知参数a、b和c。当L/d比值为6,雷诺数范围为23 000 ~ 50 000时,局部努塞尔数分布为Nus=0.0703Re0.78exp[−0.1747(s/d)1.001]。最初采用替代和合成温度数据来评估逆方法的有效性。估计参数与目标值吻合较好,偏差较小,证明了逆方法的鲁棒性。然后将预测的局部努塞尔数与从实验和v2 - f湍流模型模拟中获得的局部努塞尔数进行比较,结果表明与使用贝叶斯与MH-MCMC方法估计的Nus剖面高度一致。通过对模拟温度分布的分析,了解了不同雷诺数下半球形表面的热行为。研究结果表明,所提出的逆方法可以准确地预测空气射流冲击条件下热半球表面的局部努塞尔数分布,具有优化各种工业系统冷却过程的潜在应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信