Efficient adsorption of phosphate on magnetic Fe3O4@MOF@LDH superstructures: Kinetics, thermodynamics, and mechanisms

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhang Liu , Wei Han , C. Marquina , Joseph K.C. Kwan , M. Ricardo Ibarra , King Lun Yeung
{"title":"Efficient adsorption of phosphate on magnetic Fe3O4@MOF@LDH superstructures: Kinetics, thermodynamics, and mechanisms","authors":"Zhang Liu ,&nbsp;Wei Han ,&nbsp;C. Marquina ,&nbsp;Joseph K.C. Kwan ,&nbsp;M. Ricardo Ibarra ,&nbsp;King Lun Yeung","doi":"10.1016/j.envres.2025.122183","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus contamination in water systems poses a significant environmental threat, necessitating the need for effective phosphate removal methods. A novel magnetic composite, magnetic Fe<sub>3</sub>O<sub>4</sub>@MIL-100(Fe)@Mg-Al layered double hydroxide (LDH), synthesized through a solid-state transformation of MIL-100(Fe) from Fe<sub>3</sub>O<sub>4</sub> followed by in-situ growth of Mg-Al LDH. This innovative hierarchical core/shell/shell structure leverages the magnetic properties of Fe<sub>3</sub>O<sub>4</sub> for easy separation, utilizes MIL-100(Fe) to grow and orient the LDH, and exploits the large ion exchange capacity of Mg-Al LDH nanosheets for efficient phosphate capture. Our experiments demonstrated rapid phosphate removal exceeding 95 % within 10 min, achieving a final concentration of 25.5 μg/L from an initial concentration of 1 mg/L. The adsorption kinetics conformed to a pseudo-second order model, and isothermal data fit the Langmuir model. Thermodynamic analysis indicated spontaneous and exothermic adsorption, with an activation energy of 15.76 kJ mol<sup>−1</sup>. Enthalpy and entropy findings suggest a decrease in randomness during the adsorption process. Density Functional Theory (DFT) calculations revealed that phosphate ions interact strongly with Al sites in the LDH and Fe-O nodes in MIL-100(Fe). Phosphate recovery and sorbent regeneration are accomplished through a simple alkaline wash, which concentrates the recovered phosphate by 4.8 times. This study highlights the potential of Fe<sub>3</sub>O<sub>4</sub>@MIL-100(Fe)@Mg-Al LDH as a sustainable and efficient adsorbent for phosphate pollution mitigation, offering significant contributions to environmental protection and resource conservation.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"283 ","pages":"Article 122183"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125014343","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus contamination in water systems poses a significant environmental threat, necessitating the need for effective phosphate removal methods. A novel magnetic composite, magnetic Fe3O4@MIL-100(Fe)@Mg-Al layered double hydroxide (LDH), synthesized through a solid-state transformation of MIL-100(Fe) from Fe3O4 followed by in-situ growth of Mg-Al LDH. This innovative hierarchical core/shell/shell structure leverages the magnetic properties of Fe3O4 for easy separation, utilizes MIL-100(Fe) to grow and orient the LDH, and exploits the large ion exchange capacity of Mg-Al LDH nanosheets for efficient phosphate capture. Our experiments demonstrated rapid phosphate removal exceeding 95 % within 10 min, achieving a final concentration of 25.5 μg/L from an initial concentration of 1 mg/L. The adsorption kinetics conformed to a pseudo-second order model, and isothermal data fit the Langmuir model. Thermodynamic analysis indicated spontaneous and exothermic adsorption, with an activation energy of 15.76 kJ mol−1. Enthalpy and entropy findings suggest a decrease in randomness during the adsorption process. Density Functional Theory (DFT) calculations revealed that phosphate ions interact strongly with Al sites in the LDH and Fe-O nodes in MIL-100(Fe). Phosphate recovery and sorbent regeneration are accomplished through a simple alkaline wash, which concentrates the recovered phosphate by 4.8 times. This study highlights the potential of Fe3O4@MIL-100(Fe)@Mg-Al LDH as a sustainable and efficient adsorbent for phosphate pollution mitigation, offering significant contributions to environmental protection and resource conservation.

Abstract Image

磷酸盐在磁性Fe3O4@MOF@LDH上部结构上的高效吸附:动力学、热力学和机理
水系统中的磷污染构成了重大的环境威胁,因此需要有效的除磷方法。以Fe3O4为原料,通过MIL-100(Fe)固相转化,原位生长Mg-Al层状双氢氧化物(LDH),合成了磁性Fe3O4@MIL-100(Fe)@Mg-Al层状双氢氧化物(LDH)。这种创新的分层核/壳/壳结构利用Fe3O4的磁性易于分离,利用MIL-100(Fe)生长和定向LDH,并利用Mg-Al LDH纳米片的大离子交换能力进行有效的磷酸盐捕获。我们的实验表明,在10分钟内,磷酸盐的去除率超过95%,最终浓度从初始浓度1 mg/L达到25.5 μg/L。吸附动力学符合拟二级模型,等温数据符合Langmuir模型。热力学分析表明其为自发和放热吸附,活化能为15.76 kJ mol−1。焓和熵的结果表明,在吸附过程中的随机性减少。密度泛函理论(DFT)计算表明,在MIL-100(Fe)中,磷酸盐离子与LDH和Fe- o节点中的Al位点有强烈的相互作用。磷酸盐回收和吸附剂再生通过简单的碱性洗涤,回收的磷酸盐浓缩4.8倍。本研究强调了Fe3O4@MIL-100(Fe)@Mg-Al LDH作为一种可持续、高效的磷酸盐污染缓释吸附剂的潜力,为环境保护和资源节约做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信