Weighted gradient estimates to nonlinear elliptic equations of p(x)-growth with measure data

IF 2.1 1区 数学 Q1 MATHEMATICS
Zhaosheng Feng , Junjie Zhang , Shenzhou Zheng
{"title":"Weighted gradient estimates to nonlinear elliptic equations of p(x)-growth with measure data","authors":"Zhaosheng Feng ,&nbsp;Junjie Zhang ,&nbsp;Shenzhou Zheng","doi":"10.1016/j.matpur.2025.103756","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a nonlinear elliptic equation of the form <span><math><mo>−</mo><mtext>div</mtext><mi>A</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo><mo>=</mo><mi>μ</mi></math></span>, where the principle part depends on the solution itself and the right-hand data <em>μ</em> is a signed Radon measure. The associated nonlinearity is assumed to satisfy the <span><math><mo>(</mo><mi>δ</mi><mo>,</mo><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span>-BMO condition in <em>x</em> and the Lipschitz continuity condition in <em>u</em>, and its growth in <em>Du</em> is like the <span><math><mi>p</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>-Laplacian, while the boundary of underlying domain is assumed to be Reifenberg flat. We establish an optimal global Calderón-Zygmund type estimate in weighted Lorentz spaces for the gradients of very weak solutions to such a measure data problem. This is achieved by developing the perturbation method and modifying the weighted Vitali type covering argument.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103756"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242500100X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a nonlinear elliptic equation of the form divA(x,u,Du)=μ, where the principle part depends on the solution itself and the right-hand data μ is a signed Radon measure. The associated nonlinearity is assumed to satisfy the (δ,R0)-BMO condition in x and the Lipschitz continuity condition in u, and its growth in Du is like the p(x)-Laplacian, while the boundary of underlying domain is assumed to be Reifenberg flat. We establish an optimal global Calderón-Zygmund type estimate in weighted Lorentz spaces for the gradients of very weak solutions to such a measure data problem. This is achieved by developing the perturbation method and modifying the weighted Vitali type covering argument.
带测量数据的p(x)-增长非线性椭圆方程的加权梯度估计
我们考虑一个形式为- divA(x,u,Du)=μ的非线性椭圆方程,其中主要部分取决于解本身,右边的数据μ是一个带符号的Radon测度。假设相关的非线性在x中满足(δ,R0)-BMO条件,在u中满足Lipschitz连续条件,其在Du中的增长类似于p(x)- laplace,而下域边界为Reifenberg平面。对于这类测量数据问题的极弱解的梯度,我们在加权洛伦兹空间中建立了最优全局Calderón-Zygmund型估计。这是通过发展摄动法和修改加权维塔利型覆盖论证来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信