Convergence of free boundaries in the incompressible limit of tumor growth models

IF 2.1 1区 数学 Q1 MATHEMATICS
Jiajun Tong , Yuming Paul Zhang
{"title":"Convergence of free boundaries in the incompressible limit of tumor growth models","authors":"Jiajun Tong ,&nbsp;Yuming Paul Zhang","doi":"10.1016/j.matpur.2025.103752","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the general Porous Medium Equations with drift and source terms that model tumor growth. Incompressible limit of such models has been well-studied in the literature, where convergence of the density and pressure variables are established, while it remains unclear whether the free boundaries of the solutions exhibit convergence as well. In this paper, we provide an affirmative result by showing that the free boundaries converge in the Hausdorff distance in the incompressible limit. To achieve this, we quantify the relation between the free boundary motion and spatial average of the pressure, and establish a uniform-in-<em>m</em> strict expansion property of the pressure supports. As a corollary, we derive upper bounds for the Hausdorff dimensions of the free boundaries and show that the limiting free boundary has finite <span><math><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>-dimensional Hausdorff measure.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103752"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425000960","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the general Porous Medium Equations with drift and source terms that model tumor growth. Incompressible limit of such models has been well-studied in the literature, where convergence of the density and pressure variables are established, while it remains unclear whether the free boundaries of the solutions exhibit convergence as well. In this paper, we provide an affirmative result by showing that the free boundaries converge in the Hausdorff distance in the incompressible limit. To achieve this, we quantify the relation between the free boundary motion and spatial average of the pressure, and establish a uniform-in-m strict expansion property of the pressure supports. As a corollary, we derive upper bounds for the Hausdorff dimensions of the free boundaries and show that the limiting free boundary has finite (d1)-dimensional Hausdorff measure.
肿瘤生长模型不可压缩极限下自由边界的收敛性
我们研究了具有漂移和源项的模拟肿瘤生长的一般多孔介质方程。这些模型的不可压缩极限在文献中已经得到了很好的研究,其中密度和压力变量的收敛性是建立的,而解的自由边界是否也表现出收敛性尚不清楚。本文给出了一个肯定的结果,即自由边界在不可压缩极限的Hausdorff距离内收敛。为了实现这一目标,我们量化了自由边界运动与空间平均压力之间的关系,并建立了压力支架的m内均匀严格展开性质。作为推论,我们导出了自由边界的Hausdorff维的上界,并证明了极限自由边界具有有限(d−1)维的Hausdorff测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信