Enabling Autonomous Moisture Harvesting and Cyclic Transpiration Cooling with MXene-LiBr Functionalized Hydrogels for Advanced Thermal Management

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kuan Zhao, Ju Tang, Dichu Xu, Guice Yao, Qi Yan, Bingjun Zhu, Jin Zhao, Dongsheng Wen
{"title":"Enabling Autonomous Moisture Harvesting and Cyclic Transpiration Cooling with MXene-LiBr Functionalized Hydrogels for Advanced Thermal Management","authors":"Kuan Zhao, Ju Tang, Dichu Xu, Guice Yao, Qi Yan, Bingjun Zhu, Jin Zhao, Dongsheng Wen","doi":"10.1002/adfm.202511789","DOIUrl":null,"url":null,"abstract":"Hygroscopic hydrogels offer cyclic transpiration cooling, mitigating local heat accumulation in integrated flexible electronics. However, the low thermal conductivity of traditional hygroscopic hydrogels poses a major challenge in meeting growing heat dissipation demands in electronics. Herein, a strategy for synthesizing hydrogels with highly thermally conductive MXene flakes is introduced enabling dual functions of autonomous moisture harvesting and cyclic transpiration cooling. A lithium bromide–polyacrylamide/MXene (Li-PAAm/MXene) hydrogel is engineered by integrating MXene into polyacrylamide (PAAm) chains via hydrogen bonding, simultaneously enhancing thermal conductivity through microscale thermal bridges and increasing hygroscopic capacity through synergistic effect of MXene and lithium bromide (LiBr), thereby generating more moisture sorption sites and lowering diffusion energy barriers. Morphology, chemical, and thermal characterizations demonstrate the formation of heat-transfer microchannels within the hydrogel, resulting in higher thermal conductivity and enhanced water evaporation. Hygroscopic capacity tests and molecular dynamics simulations further reveal that the synergy between MXene and LiBr increases osmotic pressure and water diffusion rates, leading to more efficient moisture sorption. This highly thermally conductive hygroscopic hydrogel demonstrates efficient cyclic transpiration cooling, outperforming commercial heat dissipation films and conventional hygroscopic hydrogels, making it a promising candidate for advanced thermal management in electronics.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"44 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511789","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hygroscopic hydrogels offer cyclic transpiration cooling, mitigating local heat accumulation in integrated flexible electronics. However, the low thermal conductivity of traditional hygroscopic hydrogels poses a major challenge in meeting growing heat dissipation demands in electronics. Herein, a strategy for synthesizing hydrogels with highly thermally conductive MXene flakes is introduced enabling dual functions of autonomous moisture harvesting and cyclic transpiration cooling. A lithium bromide–polyacrylamide/MXene (Li-PAAm/MXene) hydrogel is engineered by integrating MXene into polyacrylamide (PAAm) chains via hydrogen bonding, simultaneously enhancing thermal conductivity through microscale thermal bridges and increasing hygroscopic capacity through synergistic effect of MXene and lithium bromide (LiBr), thereby generating more moisture sorption sites and lowering diffusion energy barriers. Morphology, chemical, and thermal characterizations demonstrate the formation of heat-transfer microchannels within the hydrogel, resulting in higher thermal conductivity and enhanced water evaporation. Hygroscopic capacity tests and molecular dynamics simulations further reveal that the synergy between MXene and LiBr increases osmotic pressure and water diffusion rates, leading to more efficient moisture sorption. This highly thermally conductive hygroscopic hydrogel demonstrates efficient cyclic transpiration cooling, outperforming commercial heat dissipation films and conventional hygroscopic hydrogels, making it a promising candidate for advanced thermal management in electronics.

Abstract Image

利用MXene-LiBr功能化水凝胶实现自动集湿和循环蒸腾冷却,实现先进的热管理
吸湿性水凝胶提供循环蒸腾冷却,减轻集成柔性电子器件的局部热量积累。然而,传统吸湿性水凝胶的低导热性对满足电子产品日益增长的散热需求提出了重大挑战。本文介绍了一种利用高导热MXene薄片合成水凝胶的策略,该策略具有自主集湿和循环蒸腾冷却的双重功能。通过氢键将MXene整合到聚丙烯酰胺(PAAm)链中,同时通过微尺度热桥提高导热性,通过MXene和溴化锂(LiBr)的协同作用提高吸湿能力,从而产生更多的吸湿位点,降低扩散能垒,从而设计出一种溴化锂-聚丙烯酰胺/MXene (Li-PAAm/MXene)水凝胶。形态、化学和热表征表明,水凝胶内部形成了传热微通道,导致更高的导热性和增强的水蒸发。吸湿能力测试和分子动力学模拟进一步表明,MXene和LiBr之间的协同作用增加了渗透压和水扩散速率,从而提高了吸湿效率。这种高导热的吸湿性水凝胶具有高效的循环蒸腾冷却性能,优于商业散热膜和传统的吸湿性水凝胶,使其成为电子领域先进热管理的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信