Sherman Foo, Ido Caspy, Alice Cezanne, Tanmay A. M. Bharat, Buzz Baum
{"title":"A self-assembling surface layer flattens the cytokinetic furrow to aid cell division in an archaeon","authors":"Sherman Foo, Ido Caspy, Alice Cezanne, Tanmay A. M. Bharat, Buzz Baum","doi":"10.1073/pnas.2501044122","DOIUrl":null,"url":null,"abstract":"The surface layer or “S-layer” is a two-dimensional lattice of proteins that coats a wide range of archaea and bacteria in place of a cell wall or capsular polysaccharides. S-layers are thought to play an important role in chemically and physically insulating cells from the external environment. Here, we show that the integrity of the S-layer in <jats:italic toggle=\"yes\">Sulfolobus acidocaldarius</jats:italic> is maintained as cells grow via a process of self-assembly as SlaA monomers fill gaps in the lattice. Although this lattice which is physically tethered to the membrane might be expected to hinder cell division, we show that the S-layer flattens the membrane at cytokinesis to accelerate ESCRT-III-dependent cell division—and is important for robust, successful cell divisions under conditions of mechanical stress. Taken together, these results define the rules governing S-layer self-assembly and show how a flexible lattice coat that is coupled to the underlying membrane can both provide a cell with mechanical support and help to drive rapid and functionally important changes in cell shape.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"42 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2501044122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The surface layer or “S-layer” is a two-dimensional lattice of proteins that coats a wide range of archaea and bacteria in place of a cell wall or capsular polysaccharides. S-layers are thought to play an important role in chemically and physically insulating cells from the external environment. Here, we show that the integrity of the S-layer in Sulfolobus acidocaldarius is maintained as cells grow via a process of self-assembly as SlaA monomers fill gaps in the lattice. Although this lattice which is physically tethered to the membrane might be expected to hinder cell division, we show that the S-layer flattens the membrane at cytokinesis to accelerate ESCRT-III-dependent cell division—and is important for robust, successful cell divisions under conditions of mechanical stress. Taken together, these results define the rules governing S-layer self-assembly and show how a flexible lattice coat that is coupled to the underlying membrane can both provide a cell with mechanical support and help to drive rapid and functionally important changes in cell shape.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.