Judit Liaño-Pons, Elisa Garde-Lapido, Fenja L. Fahrig, Merle Jäckering, Ye Yuan, Stina Andersson, Lea Schort, Maria Esteve, Sofie Mohlin, Oscar C Bedoya-Reina, Marie Arsenian-Henriksson
{"title":"Combined targeting of PRDX6 and GSTP1 as a potential differentiation strategy for neuroblastoma treatment","authors":"Judit Liaño-Pons, Elisa Garde-Lapido, Fenja L. Fahrig, Merle Jäckering, Ye Yuan, Stina Andersson, Lea Schort, Maria Esteve, Sofie Mohlin, Oscar C Bedoya-Reina, Marie Arsenian-Henriksson","doi":"10.1073/pnas.2427211122","DOIUrl":null,"url":null,"abstract":"Neuroblastoma (NB) is a heterogeneous childhood cancer, characterized by the amplification of the <jats:italic toggle=\"yes\">MYCN</jats:italic> oncogene in 40% of the high-risk cases. Our previous work demonstrated that MYCN drives metabolic reprogramming in NB, including upregulation of antioxidant enzymes. Here, we identify peroxiredoxin 6 (PRDX6) as a promising therapeutic target in NB. Pharmacological inhibition of PRDX6 reduces MYCN levels, induces apoptosis, and promotes neuronal differentiation accompanied by lipid droplet accumulation, essential for the phenotypic reprogramming. Moreover, combined inhibition of PRDX6 and glutathione S-transferase Pi 1 (GSTP1), a key antioxidant enzyme needed for PRDX6 activation, demonstrated synergistic effects both in vitro and in vivo. This strategy results in neuronal maturation as well as activity and initiates downstream pathways distinct from the ones triggered by retinoic acid, the differentiation-inducing agent currently used in clinical practice for NB. Notably, both <jats:italic toggle=\"yes\">PRDX6</jats:italic> and <jats:italic toggle=\"yes\">GSTP1</jats:italic> are highly expressed in the developing murine adrenal gland, as well as in high-risk, <jats:italic toggle=\"yes\">MYCN</jats:italic> -amplified NB, correlating with an undifferentiated state and poor prognosis. Together, our results provide insights into the potential of PRDX6 and GSTP1 as therapeutic targets for differentiation induction for children with NB.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"599 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2427211122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma (NB) is a heterogeneous childhood cancer, characterized by the amplification of the MYCN oncogene in 40% of the high-risk cases. Our previous work demonstrated that MYCN drives metabolic reprogramming in NB, including upregulation of antioxidant enzymes. Here, we identify peroxiredoxin 6 (PRDX6) as a promising therapeutic target in NB. Pharmacological inhibition of PRDX6 reduces MYCN levels, induces apoptosis, and promotes neuronal differentiation accompanied by lipid droplet accumulation, essential for the phenotypic reprogramming. Moreover, combined inhibition of PRDX6 and glutathione S-transferase Pi 1 (GSTP1), a key antioxidant enzyme needed for PRDX6 activation, demonstrated synergistic effects both in vitro and in vivo. This strategy results in neuronal maturation as well as activity and initiates downstream pathways distinct from the ones triggered by retinoic acid, the differentiation-inducing agent currently used in clinical practice for NB. Notably, both PRDX6 and GSTP1 are highly expressed in the developing murine adrenal gland, as well as in high-risk, MYCN -amplified NB, correlating with an undifferentiated state and poor prognosis. Together, our results provide insights into the potential of PRDX6 and GSTP1 as therapeutic targets for differentiation induction for children with NB.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.