{"title":"A 2°C warming can double the frequency of extreme summer downpours in the Alps","authors":"Nadav Peleg, Marika Koukoula, Francesco Marra","doi":"10.1038/s41612-025-01081-1","DOIUrl":null,"url":null,"abstract":"<p>Intense short-duration summer rainfall in mountainous areas can trigger a variety of natural hazards, including flash floods, debris flows, and urban floods. Warming is expected to intensify extreme sub-hourly rainfall events in response to an increased atmospheric water vapor content and invigorated storm dynamics. Here, we employ a new physically-based statistical model to estimate the projected intensification of sub-hourly and hourly extreme rainfall across 299 high-mountain Alpine stations in France, Germany, Switzerland, Italy, and Austria. Analyzing the projected intensification for 10-min rainfall at 1 to 3 °C of warming confirms a general intensification at a rate of 9% °C<sup>−1</sup> over the Alpine region, with a stronger intensification at higher elevations. With a 2 °C increase in average regional temperature relative to the 1991–2020 period, extreme rainfall statistics over the Alps are likely to undergo significant changes, resulting in a two-fold increase in the probability of occurrence of the extreme rainfall levels used for infrastructure design and risk management.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"24 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01081-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intense short-duration summer rainfall in mountainous areas can trigger a variety of natural hazards, including flash floods, debris flows, and urban floods. Warming is expected to intensify extreme sub-hourly rainfall events in response to an increased atmospheric water vapor content and invigorated storm dynamics. Here, we employ a new physically-based statistical model to estimate the projected intensification of sub-hourly and hourly extreme rainfall across 299 high-mountain Alpine stations in France, Germany, Switzerland, Italy, and Austria. Analyzing the projected intensification for 10-min rainfall at 1 to 3 °C of warming confirms a general intensification at a rate of 9% °C−1 over the Alpine region, with a stronger intensification at higher elevations. With a 2 °C increase in average regional temperature relative to the 1991–2020 period, extreme rainfall statistics over the Alps are likely to undergo significant changes, resulting in a two-fold increase in the probability of occurrence of the extreme rainfall levels used for infrastructure design and risk management.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.