Hamdy Arkoub, Daniel Flynn, Adri C.T. van Duin, Miaomiao Jin
{"title":"Surface Orientation-Dependent Corrosion Behavior of NiCr Alloys in Molten FLiNaK Salt","authors":"Hamdy Arkoub, Daniel Flynn, Adri C.T. van Duin, Miaomiao Jin","doi":"10.1021/acsami.5c06557","DOIUrl":null,"url":null,"abstract":"The corrosion behavior of NiCr alloys in molten FLiNaK salt is governed by complex Cr–F chemical interactions, necessitating a fundamental understanding for enhancing alloy performance in harsh environments. However, significant gaps remain in our understanding of the dynamic atomic-scale processes driving the progression of molten salt corrosion. This study employs reactive force field-based molecular dynamics simulations to unravel the influence of crystallographic orientation, temperature, and external electric fields on corrosion kinetics. The (100), (110), and (111) orientations of Ni<sub>0.75</sub>Cr<sub>0.25</sub> alloys are evaluated at temperatures from 600 to 800 °C, with and without electric fields. Results reveal that Cr dissolution and near-surface diffusion drive pitting-like surface morphology evolution. The (110) surface shows the highest corrosion susceptibility, while the (100) and (111) surfaces exhibit greater resistance, with (111) being the most stable. The corrosion activation energy, derived from the Arrhenius relation, ranges from 0.27 to 0.41 eV, aligning well with limited experimental data yet significantly lower than bulk diffusion barriers. This finding indicates that corrosion progression is primarily a kinetically controlled near-surface process, rather than being limited by bulk diffusion as suggested in previous understanding. Additionally, electric fields perpendicular to the interface are found to asymmetrically modulate corrosion dynamics, where a positive field (+0.10 V/Å) promotes Cr dissolution. In comparison, a negative field (−0.10 V/Å) largely suppresses corrosion, which can be effectively used to mitigate corrosion. These findings, along with atomistic details into the corrosion mechanisms, offer strategic perspectives for designing corrosion-resistant materials in advanced high-temperature molten salt applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c06557","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The corrosion behavior of NiCr alloys in molten FLiNaK salt is governed by complex Cr–F chemical interactions, necessitating a fundamental understanding for enhancing alloy performance in harsh environments. However, significant gaps remain in our understanding of the dynamic atomic-scale processes driving the progression of molten salt corrosion. This study employs reactive force field-based molecular dynamics simulations to unravel the influence of crystallographic orientation, temperature, and external electric fields on corrosion kinetics. The (100), (110), and (111) orientations of Ni0.75Cr0.25 alloys are evaluated at temperatures from 600 to 800 °C, with and without electric fields. Results reveal that Cr dissolution and near-surface diffusion drive pitting-like surface morphology evolution. The (110) surface shows the highest corrosion susceptibility, while the (100) and (111) surfaces exhibit greater resistance, with (111) being the most stable. The corrosion activation energy, derived from the Arrhenius relation, ranges from 0.27 to 0.41 eV, aligning well with limited experimental data yet significantly lower than bulk diffusion barriers. This finding indicates that corrosion progression is primarily a kinetically controlled near-surface process, rather than being limited by bulk diffusion as suggested in previous understanding. Additionally, electric fields perpendicular to the interface are found to asymmetrically modulate corrosion dynamics, where a positive field (+0.10 V/Å) promotes Cr dissolution. In comparison, a negative field (−0.10 V/Å) largely suppresses corrosion, which can be effectively used to mitigate corrosion. These findings, along with atomistic details into the corrosion mechanisms, offer strategic perspectives for designing corrosion-resistant materials in advanced high-temperature molten salt applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.