Yameen Ahmed, Wanlong Wang, Mohammad Reza Kokaba, Augusto Amaro, Vishal Yeddu, Hannah Gartside, Muhammad Awais, Sergey Dayneko, Dongyang Zhang, Hayley C. Parkin, I Teng Cheong, Victor Marrugat-Arnal, Alexandre G. Brolo, Makhsud I. Saidaminov
{"title":"PTAA/Perovskite Contact-Area Reduced Solar Modules","authors":"Yameen Ahmed, Wanlong Wang, Mohammad Reza Kokaba, Augusto Amaro, Vishal Yeddu, Hannah Gartside, Muhammad Awais, Sergey Dayneko, Dongyang Zhang, Hayley C. Parkin, I Teng Cheong, Victor Marrugat-Arnal, Alexandre G. Brolo, Makhsud I. Saidaminov","doi":"10.1021/acsenergylett.5c01213","DOIUrl":null,"url":null,"abstract":"Scalable fabrication of perovskite solar cells (PSCs) in ambient air is important toward widespread industrial adoption. While spiro-OMeTAD-based PSCs perform well, they lack long-term stability, and alternative hole transport layers often trade efficiency for durability. Here we report high molecular weight poly(triarylamine) (HMW PTAA)-based PSCs fabricated in ambient air using scalable techniques, achieving 23.7% efficiency for 0.049 cm<sup>2</sup> solar cells and 22.2% for 10.23 cm<sup>2</sup> mini-modules, representing, to our knowledge, the highest values reported for scalable <i>n-i-p</i> PTAA-based perovskite photovoltaics made in ambient conditions. The HMW PTAA spontaneously forms a contact-area-reduced (CAR) interface with perovskite, enhancing charge collection and suppressing recombination. Despite reduced adhesion, the CAR interface improves PSC stability; devices retain 83% of their efficiency after 1000 h of operation at maximum power point at 55 ± 5 °C, and 77% after 1100 h of thermal stress at 85 °C. We attribute this resilience to strain-relieving interfacial voids created by the CAR interface.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"234 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01213","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Scalable fabrication of perovskite solar cells (PSCs) in ambient air is important toward widespread industrial adoption. While spiro-OMeTAD-based PSCs perform well, they lack long-term stability, and alternative hole transport layers often trade efficiency for durability. Here we report high molecular weight poly(triarylamine) (HMW PTAA)-based PSCs fabricated in ambient air using scalable techniques, achieving 23.7% efficiency for 0.049 cm2 solar cells and 22.2% for 10.23 cm2 mini-modules, representing, to our knowledge, the highest values reported for scalable n-i-p PTAA-based perovskite photovoltaics made in ambient conditions. The HMW PTAA spontaneously forms a contact-area-reduced (CAR) interface with perovskite, enhancing charge collection and suppressing recombination. Despite reduced adhesion, the CAR interface improves PSC stability; devices retain 83% of their efficiency after 1000 h of operation at maximum power point at 55 ± 5 °C, and 77% after 1100 h of thermal stress at 85 °C. We attribute this resilience to strain-relieving interfacial voids created by the CAR interface.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.