Sergey Tsarev, Daria Proniakova, Xuqi Liu, Erfu Wu, Gebhard J. Matt, Kostiantyn Sakhatskyi, Lorenzo L. A. Ferraresi, Radha Kothandaraman, Fan Fu, Ivan Shorubalko, Sergii Yakunin, Maksym V. Kovalenko
{"title":"Vertically stacked monolithic perovskite colour photodetectors","authors":"Sergey Tsarev, Daria Proniakova, Xuqi Liu, Erfu Wu, Gebhard J. Matt, Kostiantyn Sakhatskyi, Lorenzo L. A. Ferraresi, Radha Kothandaraman, Fan Fu, Ivan Shorubalko, Sergii Yakunin, Maksym V. Kovalenko","doi":"10.1038/s41586-025-09062-3","DOIUrl":null,"url":null,"abstract":"Modern colour image sensors face challenges in further improving sensitivity and image quality because of inherent limitations in light utilization efficiency1. A major factor contributing to these limitations is the use of passive optical filters, which absorb and dissipate a substantial amount of light, thereby reducing the efficiency of light capture2. On the contrary, active optical filtering in Foveon-type vertically stacked architectures still struggles to deliver optimal performance owing to their lack of colour selectivity, making them inefficient for precise colour imaging3. Here we introduce an innovative architecture for colour sensor arrays that uses multilayer monolithically stacked lead halide perovskite thin-film photodetectors. Perovskite bandgap tunability4 is utilized to selectively absorb the visible light spectrum’s red, green and blue regions, eliminating the need for colour filters. External quantum efficiencies of 50%, 47% and 53% are demonstrated for the red, green and blue channels, respectively, as well as a colour accuracy of 3.8% in ΔELab outperforming the state-of-the-art colour-filter array and Foveon-type photosensors. The image sensor design improves light utilization in colour sensors and paves the way for the next generation of highly sensitive, artefact-free images with enhanced colour fidelity. A colour sensor array based on multilayer monolithically stacked lead halide perovskite thin-film photodetectors achieves higher quantum efficiency and superior colour accuracy compared to conventional filter-based image sensors.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"642 8068","pages":"592-598"},"PeriodicalIF":50.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-09062-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09062-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modern colour image sensors face challenges in further improving sensitivity and image quality because of inherent limitations in light utilization efficiency1. A major factor contributing to these limitations is the use of passive optical filters, which absorb and dissipate a substantial amount of light, thereby reducing the efficiency of light capture2. On the contrary, active optical filtering in Foveon-type vertically stacked architectures still struggles to deliver optimal performance owing to their lack of colour selectivity, making them inefficient for precise colour imaging3. Here we introduce an innovative architecture for colour sensor arrays that uses multilayer monolithically stacked lead halide perovskite thin-film photodetectors. Perovskite bandgap tunability4 is utilized to selectively absorb the visible light spectrum’s red, green and blue regions, eliminating the need for colour filters. External quantum efficiencies of 50%, 47% and 53% are demonstrated for the red, green and blue channels, respectively, as well as a colour accuracy of 3.8% in ΔELab outperforming the state-of-the-art colour-filter array and Foveon-type photosensors. The image sensor design improves light utilization in colour sensors and paves the way for the next generation of highly sensitive, artefact-free images with enhanced colour fidelity. A colour sensor array based on multilayer monolithically stacked lead halide perovskite thin-film photodetectors achieves higher quantum efficiency and superior colour accuracy compared to conventional filter-based image sensors.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.