Comprehensive review of intake fraction methods for assessing traffic-related air pollution exposure: insights, variations, and future directions.

Shuyan Meng, Ling Qi, Pengpeng Wu, Suzhen Cao, Kai Zhang, Zongshuang Wang, Xiaoli Duan
{"title":"Comprehensive review of intake fraction methods for assessing traffic-related air pollution exposure: insights, variations, and future directions.","authors":"Shuyan Meng, Ling Qi, Pengpeng Wu, Suzhen Cao, Kai Zhang, Zongshuang Wang, Xiaoli Duan","doi":"10.1038/s41370-025-00775-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traffic-related air pollution (TRAP) poses significant risks to human health, particularly in urban areas with high traffic volumes. Intake fraction (iF) quantifies the relationship between emissions and exposure, defined as the ratio of the total inhalation increment of all exposed individuals in a target population to the emissions from specific pollution sources over a certain period.</p><p><strong>Objective: </strong>The overarching objective of this study is to unravel the underlying value and significance of the iF method in evaluating TRAP exposure risks, while also exploring its future development trajectories and potential avenues for application.</p><p><strong>Methods: </strong>We conducted a comprehensive review of iF to assess TRAP exposure. We employed a search strategy to identify and analyze literature on iF methods related to TRAP exposure across academic databases covering the period from 2002 to 2024. After deduplication, title and abstract screening, and full-text review, we ultimately included 25 studies on iF related to TRAP.</p><p><strong>Results: </strong>We classified the measurement methods of iF into four types: simple estimation method, dispersion simulation method, numerical simulation method, and exposure monitoring method. We found orders of magnitude of differences in iF among studies. Population density, pollutant concentration, and breathing rate explain a significant portion of the variations. iF values of nitrogen oxides (NO<sub>x</sub>), carbon monoxide (CO), and fine particulate matter (PM<sub>2.5</sub>) are higher than those of diesel particulate matter (DPM), ultrafine particles (UFP), and benzene. Compared to power plants, TRAP has higher iF values, emphasizing the control priority of TRAP. Future research should expand to under-researched regions, strengthen investigations on UFP and secondary pollutants, and refine iF calculation methods using high-resolution and mobility data.</p>","PeriodicalId":520670,"journal":{"name":"Journal of exposure science & environmental epidemiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of exposure science & environmental epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41370-025-00775-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traffic-related air pollution (TRAP) poses significant risks to human health, particularly in urban areas with high traffic volumes. Intake fraction (iF) quantifies the relationship between emissions and exposure, defined as the ratio of the total inhalation increment of all exposed individuals in a target population to the emissions from specific pollution sources over a certain period.

Objective: The overarching objective of this study is to unravel the underlying value and significance of the iF method in evaluating TRAP exposure risks, while also exploring its future development trajectories and potential avenues for application.

Methods: We conducted a comprehensive review of iF to assess TRAP exposure. We employed a search strategy to identify and analyze literature on iF methods related to TRAP exposure across academic databases covering the period from 2002 to 2024. After deduplication, title and abstract screening, and full-text review, we ultimately included 25 studies on iF related to TRAP.

Results: We classified the measurement methods of iF into four types: simple estimation method, dispersion simulation method, numerical simulation method, and exposure monitoring method. We found orders of magnitude of differences in iF among studies. Population density, pollutant concentration, and breathing rate explain a significant portion of the variations. iF values of nitrogen oxides (NOx), carbon monoxide (CO), and fine particulate matter (PM2.5) are higher than those of diesel particulate matter (DPM), ultrafine particles (UFP), and benzene. Compared to power plants, TRAP has higher iF values, emphasizing the control priority of TRAP. Future research should expand to under-researched regions, strengthen investigations on UFP and secondary pollutants, and refine iF calculation methods using high-resolution and mobility data.

综合评估交通相关空气污染暴露的吸入分数方法:见解、变化和未来方向。
背景:与交通有关的空气污染对人类健康构成重大风险,特别是在交通量大的城市地区。摄入分数(iF)量化了排放与暴露之间的关系,定义为目标人群中所有暴露个体在一定时期内的总吸入增量与特定污染源排放的比值。目的:本研究的总体目标是揭示iF方法在评估TRAP暴露风险中的潜在价值和意义,同时探索其未来的发展轨迹和潜在的应用途径。方法:我们对iF进行了全面的评估,以评估TRAP暴露。我们采用了一种搜索策略来识别和分析2002年至2024年期间学术数据库中与TRAP暴露相关的iF方法的文献。经过重复数据删除、标题和摘要筛选以及全文审查,我们最终纳入了25篇与TRAP相关的iF研究。结果:将中频的测量方法分为简单估计法、色散模拟法、数值模拟法和暴露监测法四种。我们发现研究中iF的数量级差异。人口密度、污染物浓度和呼吸频率是造成这些变化的重要原因。氮氧化物(NOx)、一氧化碳(CO)和细颗粒物(PM2.5)的iF值高于柴油颗粒物(DPM)、超细颗粒物(UFP)和苯。与发电厂相比,TRAP具有更高的iF值,强调了TRAP的控制优先级。未来的研究应扩展到研究不足的地区,加强对UFP和二次污染物的调查,并利用高分辨率和流动性数据完善iF计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信