Trisha Jha, Omid G Sani, Bijan Pesaran, Maryam M Shanechi
{"title":"Prioritized learning of cross-population neural dynamics.","authors":"Trisha Jha, Omid G Sani, Bijan Pesaran, Maryam M Shanechi","doi":"10.1088/1741-2552/ade569","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics.</p><p><strong>Approach: </strong>Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal.</p><p><strong>Results: </strong>First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recording during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner.</p><p><strong>Significance: </strong>Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ade569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics.
Approach: Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal.
Results: First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recording during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner.
Significance: Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.