Deep learning and inflammatory markers predict early response to immunotherapy in unresectable NSCLC: A multicenter study.

0 MEDICINE, RESEARCH & EXPERIMENTAL
Lei Yuan, Qi Wang, Fei Sun, Hongcan Shi
{"title":"Deep learning and inflammatory markers predict early response to immunotherapy in unresectable NSCLC: A multicenter study.","authors":"Lei Yuan, Qi Wang, Fei Sun, Hongcan Shi","doi":"10.17305/bb.2025.12324","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint inhibitors (ICIs) demonstrate substantial interpatient variability in clinical efficacy for unresectable non-small cell lung cancer (NSCLC), underscoring the unmet need for noninvasive biomarkers to predict early therapeutic responses and improve survival outcomes. To address this, we developed a CT-based deep learning model integrated with the systemic immune-inflammatory-nutritional index (SIINI) for early prediction of ICI response. In a retrospective multicenter study of 265 patients treated with ICIs (incorporating chest CT and laboratory data), the cohort was divided into training (70%), internal validation (30%), and external validation sets. The combined model-leveraging DenseNet121-derived deep radiomic features alongside SIINI-achieved strong predictive performance, with AUCs of 0.865 (95% CI: 0.7709-0.9595) in the internal validation cohort and 0.823 (95% CI: 0.6627-0.9827) in the external validation cohort. Gradient-weighted class activation mapping (Grad-CAM) highlighted key CT regions contributing to model predictions, enhancing interpretability for clinical application. These findings highlight the potential of integrating deep learning with inflammatory biomarkers to support personalized ICI therapy in unresectable NSCLC. Future directions include incorporating multi-omics biomarkers, expanding multicenter validation, and increasing sample sizes to further improve predictive accuracy and facilitate clinical translation.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.12324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Immune checkpoint inhibitors (ICIs) demonstrate substantial interpatient variability in clinical efficacy for unresectable non-small cell lung cancer (NSCLC), underscoring the unmet need for noninvasive biomarkers to predict early therapeutic responses and improve survival outcomes. To address this, we developed a CT-based deep learning model integrated with the systemic immune-inflammatory-nutritional index (SIINI) for early prediction of ICI response. In a retrospective multicenter study of 265 patients treated with ICIs (incorporating chest CT and laboratory data), the cohort was divided into training (70%), internal validation (30%), and external validation sets. The combined model-leveraging DenseNet121-derived deep radiomic features alongside SIINI-achieved strong predictive performance, with AUCs of 0.865 (95% CI: 0.7709-0.9595) in the internal validation cohort and 0.823 (95% CI: 0.6627-0.9827) in the external validation cohort. Gradient-weighted class activation mapping (Grad-CAM) highlighted key CT regions contributing to model predictions, enhancing interpretability for clinical application. These findings highlight the potential of integrating deep learning with inflammatory biomarkers to support personalized ICI therapy in unresectable NSCLC. Future directions include incorporating multi-omics biomarkers, expanding multicenter validation, and increasing sample sizes to further improve predictive accuracy and facilitate clinical translation.

深度学习和炎症标志物预测不可切除的非小细胞肺癌免疫治疗的早期反应:一项多中心研究
免疫检查点抑制剂(ICIs)在不可切除的非小细胞肺癌(NSCLC)的临床疗效中显示出显著的患者间差异,强调了对非侵入性生物标志物预测早期治疗反应和改善生存结果的需求未得到满足。为了解决这个问题,我们开发了一种基于ct的深度学习模型,结合全身免疫-炎症-营养指数(SIINI),用于早期预测ICI反应。在一项针对265名接受ICIs治疗的患者(包括胸部CT和实验室数据)的回顾性多中心研究中,队列被分为训练组(70%)、内部验证组(30%)和外部验证组。利用densenet121衍生的深放射学特征和sii的联合模型取得了很强的预测性能,内部验证队列的auc为0.865 (95% CI: 0.7709-0.9595),外部验证队列的auc为0.823 (95% CI: 0.6627-0.9827)。梯度加权类激活映射(Grad-CAM)突出了有助于模型预测的关键CT区域,增强了临床应用的可解释性。这些发现强调了将深度学习与炎症生物标志物相结合的潜力,以支持不可切除的非小细胞肺癌的个性化ICI治疗。未来的发展方向包括纳入多组学生物标志物,扩大多中心验证,增加样本量,以进一步提高预测准确性和促进临床翻译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信