Conductive dendrite engineering of single-crystalline two-dimensional dielectric memristors.

IF 25.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-03-18 eCollection Date: 2025-06-02 DOI:10.1016/j.xinn.2025.100885
Yu Kang, Xingyu Zhai, Quan Yang, Baoshi Qiao, Zheng Bian, Haohan Chen, Huan Hu, Yang Xu, Ming Tian, Neng Wan, Wenchao Chen, Yang Chai, Yuda Zhao, Bin Yu
{"title":"Conductive dendrite engineering of single-crystalline two-dimensional dielectric memristors.","authors":"Yu Kang, Xingyu Zhai, Quan Yang, Baoshi Qiao, Zheng Bian, Haohan Chen, Huan Hu, Yang Xu, Ming Tian, Neng Wan, Wenchao Chen, Yang Chai, Yuda Zhao, Bin Yu","doi":"10.1016/j.xinn.2025.100885","DOIUrl":null,"url":null,"abstract":"<p><p>Ultralow-power non-volatile memristors are key elements in electronics. Generally, power reduction of memristors compromises data retention, a challenge known as the \"power-retention dilemma,\" due to the stochastic formation of conductive dendrites in resistive-switching materials. Here, we report the results of conductive dendrite engineering in single-crystalline two-dimensional (2D) dielectrics in which directional control of filamentary distribution is possible. We find that the single-vacancy density (n<sub>SV</sub>) of single-crystalline hexagonal boron nitride (h-BN) plays an essential role in regulating conductive dendrite growth, supported by scanning joule expansion microscopy (SJEM). With optimized n<sub>SV</sub>, random dendrite growth is largely limited, and electrons hop between the neighboring Ag nanoclusters in vertical channels. The corresponding model was established to probe the relationship between n<sub>SV</sub> and memristor operating voltage. The conductive channel confinement in the vertical orientation contributes to long-retention non-volatile memristors with ultralow switch voltages (set: 26 mV; reset: -135 mV), excellent power efficiency (4 fW standby and a switching energy of 72 pJ) while keeping a high on/off resistance ratio of 10<sup>8</sup>. Even at a record-low compliance current of 10 nA, memristors retains very robust non-volatile, multiple resistive states with an operating voltage less than 120 mV (the per-transition power low as 900 pW).</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 6","pages":"100885"},"PeriodicalIF":25.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100885","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/2 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ultralow-power non-volatile memristors are key elements in electronics. Generally, power reduction of memristors compromises data retention, a challenge known as the "power-retention dilemma," due to the stochastic formation of conductive dendrites in resistive-switching materials. Here, we report the results of conductive dendrite engineering in single-crystalline two-dimensional (2D) dielectrics in which directional control of filamentary distribution is possible. We find that the single-vacancy density (nSV) of single-crystalline hexagonal boron nitride (h-BN) plays an essential role in regulating conductive dendrite growth, supported by scanning joule expansion microscopy (SJEM). With optimized nSV, random dendrite growth is largely limited, and electrons hop between the neighboring Ag nanoclusters in vertical channels. The corresponding model was established to probe the relationship between nSV and memristor operating voltage. The conductive channel confinement in the vertical orientation contributes to long-retention non-volatile memristors with ultralow switch voltages (set: 26 mV; reset: -135 mV), excellent power efficiency (4 fW standby and a switching energy of 72 pJ) while keeping a high on/off resistance ratio of 108. Even at a record-low compliance current of 10 nA, memristors retains very robust non-volatile, multiple resistive states with an operating voltage less than 120 mV (the per-transition power low as 900 pW).

单晶二维介质忆阻器的导电枝晶工程。
超低功耗非易失性忆阻器是电子器件中的关键元件。一般来说,由于电阻开关材料中导电枝晶的随机形成,忆阻器的功耗降低会损害数据保留,这是一个被称为“功率保留困境”的挑战。在这里,我们报告了在单晶二维(2D)电介质中导电枝晶工程的结果,其中线状分布的方向控制是可能的。扫描焦耳膨胀显微镜(SJEM)支持了单晶六方氮化硼(h-BN)的单空位密度(nSV)对导电枝晶生长的调控作用。优化后的nSV极大地限制了随机枝晶的生长,电子在垂直通道中相邻的银纳米团簇之间跳跃。建立了相应的模型,探讨了非对称电压与忆阻器工作电压的关系。垂直方向的导电通道限制有助于长时间保持具有超低开关电压(设置:26 mV;复位:-135 mV),出色的电源效率(4 fW待机,72 pJ的开关能量),同时保持108的高通/关电阻比。即使在10 nA的创纪录低顺应电流下,忆阻器在工作电压低于120 mV(每次转换功率低至900 pW)的情况下仍能保持非常稳健的非易失性、多电阻状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信