Krista G Steenbergen, Stephanie Lambie, Charlie Ruffman, Nicola Gaston
{"title":"Atomic-Scale Dynamics at the Interface of Doped Liquid Gallium: Contrasting Effects of Gallium Oxide and Vacuum.","authors":"Krista G Steenbergen, Stephanie Lambie, Charlie Ruffman, Nicola Gaston","doi":"10.1002/smsc.202500153","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid gallium exhibits a unique, geometrically structured surface that directly influences the diffusion and coalescence of metal solutes at its surface. The complex interplay between different chemical species and gallium's unusual interfacial properties remains poorly understood, yet it plays a crucial role in controlling dopant dynamics, with applications spanning catalysis, nanoscale fabrication, flexible electronics, and liquid metal batteries. Herein, large-scale simulations with <i>ab</i> <i>initio</i>-trained machine learning force fields reveal strikingly different interactions of Ag, Au, Bi, Li, Pt, and Sn with liquid gallium interfaces, including both liquid-vacuum and liquid-gallium oxide boundaries. For example, Bi dopants migrate strongly toward vacuum interfaces but are repelled by the oxide interface, while Au is repelled by both interfaces. The results have direct implications for applications involving doped liquid gallium systems, including optimizing Bi surface patterning in plasmonic and catalytic applications or the use of Li in liquid metal batteries. More broadly, these findings underscore the critical role of interfaces in modulating dopant dynamics, offering new pathways for tuning the properties and functionalities of liquid metal technologies.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2500153"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202500153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid gallium exhibits a unique, geometrically structured surface that directly influences the diffusion and coalescence of metal solutes at its surface. The complex interplay between different chemical species and gallium's unusual interfacial properties remains poorly understood, yet it plays a crucial role in controlling dopant dynamics, with applications spanning catalysis, nanoscale fabrication, flexible electronics, and liquid metal batteries. Herein, large-scale simulations with abinitio-trained machine learning force fields reveal strikingly different interactions of Ag, Au, Bi, Li, Pt, and Sn with liquid gallium interfaces, including both liquid-vacuum and liquid-gallium oxide boundaries. For example, Bi dopants migrate strongly toward vacuum interfaces but are repelled by the oxide interface, while Au is repelled by both interfaces. The results have direct implications for applications involving doped liquid gallium systems, including optimizing Bi surface patterning in plasmonic and catalytic applications or the use of Li in liquid metal batteries. More broadly, these findings underscore the critical role of interfaces in modulating dopant dynamics, offering new pathways for tuning the properties and functionalities of liquid metal technologies.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.