Stable Na Deposition/Dissolution Enabled by 3D Bimetallic Carbon Fibers with Artificial Solid Electrolyte Interface.

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-04-29 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400655
Sandro Schöner, Dana Schmidt, Leonie Wildersinn, Stephanie E Wolf, Sebastian Speer, Beatrice Wolff, Arseniy Bokov, Pengfei Cao, Anna Windmüller, Xiaoxuan Chen, Chih-Long Tsai, Fabian Jeschull, Hermann Tempel, Shicheng Yu, Rüdiger-A Eichel
{"title":"Stable Na Deposition/Dissolution Enabled by 3D Bimetallic Carbon Fibers with Artificial Solid Electrolyte Interface.","authors":"Sandro Schöner, Dana Schmidt, Leonie Wildersinn, Stephanie E Wolf, Sebastian Speer, Beatrice Wolff, Arseniy Bokov, Pengfei Cao, Anna Windmüller, Xiaoxuan Chen, Chih-Long Tsai, Fabian Jeschull, Hermann Tempel, Shicheng Yu, Rüdiger-A Eichel","doi":"10.1002/smsc.202400655","DOIUrl":null,"url":null,"abstract":"<p><p>3D bimetallic carbon nanofibers (CNFs) are promising interlayers for regulating Na deposition/dissolution on the Na metal or directly on current collectors like Cu. However, uncontrollable solid electrolyte interface (SEI) growth on the interlayer during the repeated Na plating/stripping process leads to low initial Coulombic efficiency (CE), impeding the practical applications of such a protective layer in Na metal batteries. Herein, an artificial SEI-coated interlayer decorated with sodiophilic Ag and sodiophobic Cu on CNF is applied on Cu foil to regulate the Na deposition/dissolution behavior. The artificial SEI, consisting of organic components like RCO<sub>2</sub>Na/RCONa and inorganic reactants Na<sub>2</sub>CO<sub>3</sub>/Na<sub>x</sub>O<sub>y</sub>, minimizes irreversible electrolyte decomposition at the interlayer. The sodiophobic-sodiophilic bimetallic CNF interlayer is lightweight, porous, and mechanically robust. It can guide Na deposition toward the sodiophilic Ag-rich region of the CNF matrix and cluster in the open pores facing the current collector, effectively preventing Na dendrite formation. The interlayer features with artificial SEI synergistically enhance the stability of Na deposition/dissolution on Cu foil, resulting in a high average CE of over 99.5% for 600 cycles spanning 6500 h. Furthermore, post-analysis confirms the high electrochemical stability of the artificial SEI of the interlayer during cycling.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400655"},"PeriodicalIF":11.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

3D bimetallic carbon nanofibers (CNFs) are promising interlayers for regulating Na deposition/dissolution on the Na metal or directly on current collectors like Cu. However, uncontrollable solid electrolyte interface (SEI) growth on the interlayer during the repeated Na plating/stripping process leads to low initial Coulombic efficiency (CE), impeding the practical applications of such a protective layer in Na metal batteries. Herein, an artificial SEI-coated interlayer decorated with sodiophilic Ag and sodiophobic Cu on CNF is applied on Cu foil to regulate the Na deposition/dissolution behavior. The artificial SEI, consisting of organic components like RCO2Na/RCONa and inorganic reactants Na2CO3/NaxOy, minimizes irreversible electrolyte decomposition at the interlayer. The sodiophobic-sodiophilic bimetallic CNF interlayer is lightweight, porous, and mechanically robust. It can guide Na deposition toward the sodiophilic Ag-rich region of the CNF matrix and cluster in the open pores facing the current collector, effectively preventing Na dendrite formation. The interlayer features with artificial SEI synergistically enhance the stability of Na deposition/dissolution on Cu foil, resulting in a high average CE of over 99.5% for 600 cycles spanning 6500 h. Furthermore, post-analysis confirms the high electrochemical stability of the artificial SEI of the interlayer during cycling.

具有人工固体电解质界面的三维双金属碳纤维实现稳定的Na沉积/溶解。
三维双金属碳纳米纤维(CNFs)是一种很有前途的中间层,用于调节Na金属或直接在电流集电极(如Cu)上的沉积/溶解。然而,在重复镀钠/剥离过程中,中间层上不受控制的固体电解质界面(SEI)生长导致初始库仑效率(CE)较低,阻碍了该保护层在钠金属电池中的实际应用。本文在CNF上人工包裹了一层亲钠银和疏钠铜装饰的sei夹层,以调节Cu箔上Na的沉积/溶解行为。人工SEI由有机组分如RCO2Na/RCONa和无机反应物Na2CO3/ naxyy组成,最大限度地减少了中间层不可逆电解质的分解。疏钠-亲钠双金属CNF夹层重量轻,多孔,机械坚固。它可以引导Na沉积到CNF基质的亲钠富银区,并聚集在面向集流器的开放孔中,有效地阻止Na枝晶的形成。层间特征与人工SEI协同增强了Cu箔上Na沉积/溶解的稳定性,在600次循环6500 h内平均CE超过99.5%。此外,后期分析证实了中间层的人工SEI在循环过程中具有很高的电化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信