Se-Assisted Modulation of Electronic Structure of Ruthenium Phosphide Nanotubes for Efficient Alkaline Hydrogen Evolution Reaction.

IF 8.3 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2025-03-13 eCollection Date: 2025-06-01 DOI:10.1002/smsc.202400610
Yongju Hong, Eunsoo Lee, Jae Hun Seol, Tae Kyung Lee, Songa Choi, Seong Chan Cho, Taekyung Kim, Hionsuck Baik, Sangyeon Jeong, Sung Jong Yoo, Sang Uck Lee, Kwangyeol Lee
{"title":"Se-Assisted Modulation of Electronic Structure of Ruthenium Phosphide Nanotubes for Efficient Alkaline Hydrogen Evolution Reaction.","authors":"Yongju Hong, Eunsoo Lee, Jae Hun Seol, Tae Kyung Lee, Songa Choi, Seong Chan Cho, Taekyung Kim, Hionsuck Baik, Sangyeon Jeong, Sung Jong Yoo, Sang Uck Lee, Kwangyeol Lee","doi":"10.1002/smsc.202400610","DOIUrl":null,"url":null,"abstract":"<p><p>Anion-exchange membrane water electrolysis (AEMWE) holds immense promise for hydrogen (H<sub>2</sub>) production yet faces challenges due to the sluggish kinetics of the hydrogen evolution reaction (HER). Highly efficient and durable catalysts for HER are crucial for the successful implementation of AEMWE to produce hydrogen gas reliably. Ruthenium phosphides (Ru <sub><i>x</i></sub> P) have emerged as promising non-Pt catalysts for alkaline HER; however, they suffer from rapid degradation due to weak Ru-P bonding, which cannot protect the Ru center from further oxidation and subsequent dissolution. Herein, first-principles calculations indicate the enhanced stability of Ru-Se against oxidation compared to Ru-P, highlighting the importance of introducing Se into the Ru<sub>2</sub>P phase. Electrochemical studies using the selenium (Se)-doped Ru<sub>2</sub>P double-walled nanotubes (Ru<sub>2</sub>(P<sub>0.9</sub>Se<sub>0.1</sub>) DWNTs) demonstrate significantly lower overpotentials (29 mV @ 10 mA cm<sup>-2</sup>) and robust stability (>50 h) in 1.0 m KOH, surpassing those of Pt/C. In AEMWE, Ru<sub>2</sub>(P<sub>0.9</sub>Se<sub>0.1</sub>) DWNTs exhibit an outstanding performance (10.31 A cm<sup>-2</sup> @ 80 °C, stable @ 1.0 A cm<sup>-2</sup> for ≈200 h), surpassing state-of-the-art catalysts. The findings of this study highlight the pivotal role of anion modification in enhancing the catalytic stability and performance for efficient hydrogen production in AEMWE systems.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400610"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anion-exchange membrane water electrolysis (AEMWE) holds immense promise for hydrogen (H2) production yet faces challenges due to the sluggish kinetics of the hydrogen evolution reaction (HER). Highly efficient and durable catalysts for HER are crucial for the successful implementation of AEMWE to produce hydrogen gas reliably. Ruthenium phosphides (Ru x P) have emerged as promising non-Pt catalysts for alkaline HER; however, they suffer from rapid degradation due to weak Ru-P bonding, which cannot protect the Ru center from further oxidation and subsequent dissolution. Herein, first-principles calculations indicate the enhanced stability of Ru-Se against oxidation compared to Ru-P, highlighting the importance of introducing Se into the Ru2P phase. Electrochemical studies using the selenium (Se)-doped Ru2P double-walled nanotubes (Ru2(P0.9Se0.1) DWNTs) demonstrate significantly lower overpotentials (29 mV @ 10 mA cm-2) and robust stability (>50 h) in 1.0 m KOH, surpassing those of Pt/C. In AEMWE, Ru2(P0.9Se0.1) DWNTs exhibit an outstanding performance (10.31 A cm-2 @ 80 °C, stable @ 1.0 A cm-2 for ≈200 h), surpassing state-of-the-art catalysts. The findings of this study highlight the pivotal role of anion modification in enhancing the catalytic stability and performance for efficient hydrogen production in AEMWE systems.

硒辅助调制磷化钌纳米管的电子结构用于高效碱性析氢反应。
阴离子交换膜电解(AEMWE)在制氢(H2)方面具有巨大的前景,但由于析氢反应(HER)动力学缓慢而面临挑战。高效耐用的HER催化剂是成功实施AEMWE以可靠地生产氢气的关键。磷化钌(Ru x P)已成为碱性HER中很有前途的非铂催化剂;然而,由于弱的Ru- p键,它们的降解速度很快,不能保护Ru中心免受进一步氧化和随后的溶解。在此,第一性原理计算表明,与Ru-P相比,Ru-Se抗氧化的稳定性增强,突出了将Se引入Ru2P相的重要性。使用硒(Se)掺杂的Ru2P双壁纳米管(Ru2(P0.9Se0.1) DWNTs)进行的电化学研究表明,在1.0 m KOH下,过电位(29 mV @ 10 mA cm-2)和稳定性(>50 h)显著降低,超过了Pt/C。在AEMWE中,Ru2(P0.9Se0.1) DWNTs表现出出色的性能(在80°C时10.31 A cm-2,在1.0 A cm-2时稳定约200小时),超过了目前最先进的催化剂。本研究结果强调了阴离子改性在提高AEMWE系统的催化稳定性和高效制氢性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信