Lukas Heuberger, Arianna Balestri, Shabnam Tarvirdipour, Larisa E Kapinos, Roderick Y H Lim, Emanuel Lörtscher, Cora-Ann Schoenenberger, Cornelia G Palivan
{"title":"Polymeric Giant Unilamellar Vesicles Support Longevity of Native Nuclei in Protocells.","authors":"Lukas Heuberger, Arianna Balestri, Shabnam Tarvirdipour, Larisa E Kapinos, Roderick Y H Lim, Emanuel Lörtscher, Cora-Ann Schoenenberger, Cornelia G Palivan","doi":"10.1002/smsc.202400622","DOIUrl":null,"url":null,"abstract":"<p><p>Protocells offer a versatile material for dissecting cellular processes and developing simplified biomimetic systems by combining biological components with synthetic ones. However, a gap exists between the integrity and complex functionality of native organelles such as nuclei, and bottom-up strategies reducing cellular functions within a synthetic environment. Here, this gap is bridged by incorporating native nuclei into polymeric giant unilamellar vesicles (pGUVs) using double-emulsion microfluidics. It is shown that the nuclei retain their morphology and nuclear envelope integrity, facilitating the import of co-encapsulated peptide-based multicompartment micelles (MCMs) via nuclear localization signals (NLS). Importantly, it is demonstrated that the nuclear import machinery remains functional inside the protocells, and by enriching the GUV interior with nuclear import-promoting factors, the delivery efficiency of NLS-MCMs significantly increases. The findings reveal that nucleated protocells preserve nuclear function and integrity for extended periods, providing a new platform for studying nuclear processes in a simplified, yet biologically relevant, environment. This approach opens avenues for creating advanced biohybrid materials, offering opportunities to investigate organelle behavior and their interactions with cellular components in greater detail. The findings establish a foundation for high-throughput applications in synthetic biology and contribute valuable insights into sustaining complex cellular functions in engineered systems.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400622"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protocells offer a versatile material for dissecting cellular processes and developing simplified biomimetic systems by combining biological components with synthetic ones. However, a gap exists between the integrity and complex functionality of native organelles such as nuclei, and bottom-up strategies reducing cellular functions within a synthetic environment. Here, this gap is bridged by incorporating native nuclei into polymeric giant unilamellar vesicles (pGUVs) using double-emulsion microfluidics. It is shown that the nuclei retain their morphology and nuclear envelope integrity, facilitating the import of co-encapsulated peptide-based multicompartment micelles (MCMs) via nuclear localization signals (NLS). Importantly, it is demonstrated that the nuclear import machinery remains functional inside the protocells, and by enriching the GUV interior with nuclear import-promoting factors, the delivery efficiency of NLS-MCMs significantly increases. The findings reveal that nucleated protocells preserve nuclear function and integrity for extended periods, providing a new platform for studying nuclear processes in a simplified, yet biologically relevant, environment. This approach opens avenues for creating advanced biohybrid materials, offering opportunities to investigate organelle behavior and their interactions with cellular components in greater detail. The findings establish a foundation for high-throughput applications in synthetic biology and contribute valuable insights into sustaining complex cellular functions in engineered systems.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.