Sukhvir Kaur Bhangu, Nicholas Welch, Morgan Lewis, Fanyi Li, Brint Gardner, Helmut Thissen, Wioleta Kowalczyk
{"title":"Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides.","authors":"Sukhvir Kaur Bhangu, Nicholas Welch, Morgan Lewis, Fanyi Li, Brint Gardner, Helmut Thissen, Wioleta Kowalczyk","doi":"10.1002/smsc.202400579","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) offer a highly potent alternative solution due to their broad-spectrum activity and minimum resistance development against the rapidly evolving antibiotic-resistant pathogens. Herein, to accelerate the discovery process of new AMPs, a predictive and generative algorithm is build, which constructs new peptide sequences, scores their antimicrobial activity using a machine learning (ML) model, identifies amino acid motifs, and assembles high-ranking motifs into new peptide sequences. The eXtreme Gradient Boosting model achieves an accuracy of ≈87% in distinguishing between AMPs and non-AMPs. The generated peptide sequences are experimentally validated against the bacterial pathogens, and an accuracy of ≈60% is achieved. To refine the algorithm, the physicochemical features are analyzed, particularly charge and hydrophobicity of experimentally validated peptides. The peptides with specific range of charge and hydrophobicity are then removed, which lead to a substantial increase in an experimental accuracy, from ≈60% to ≈80%. Furthermore, generated peptides are active against different fungal strains with minimal off-target toxicity. In summary, in silico predictive and generative models for functional motif and AMP discovery are powerful tools for engineering highly effective AMPs to combat multidrug resistant pathogens.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 6","pages":"2400579"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) offer a highly potent alternative solution due to their broad-spectrum activity and minimum resistance development against the rapidly evolving antibiotic-resistant pathogens. Herein, to accelerate the discovery process of new AMPs, a predictive and generative algorithm is build, which constructs new peptide sequences, scores their antimicrobial activity using a machine learning (ML) model, identifies amino acid motifs, and assembles high-ranking motifs into new peptide sequences. The eXtreme Gradient Boosting model achieves an accuracy of ≈87% in distinguishing between AMPs and non-AMPs. The generated peptide sequences are experimentally validated against the bacterial pathogens, and an accuracy of ≈60% is achieved. To refine the algorithm, the physicochemical features are analyzed, particularly charge and hydrophobicity of experimentally validated peptides. The peptides with specific range of charge and hydrophobicity are then removed, which lead to a substantial increase in an experimental accuracy, from ≈60% to ≈80%. Furthermore, generated peptides are active against different fungal strains with minimal off-target toxicity. In summary, in silico predictive and generative models for functional motif and AMP discovery are powerful tools for engineering highly effective AMPs to combat multidrug resistant pathogens.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.