Karin Krupinska, Susann Frank, Luca Boschian, Monireh Saeid Nia, Susanne Braun, Anke Schäfer, Ulrike Voigt, Ewa Niewiadomska, Bettina Hause, Götz Hensel, Wolfgang Bilger
{"title":"Iron allocation to chloroplast proteins depends on the DNA-binding protein WHIRLY1.","authors":"Karin Krupinska, Susann Frank, Luca Boschian, Monireh Saeid Nia, Susanne Braun, Anke Schäfer, Ulrike Voigt, Ewa Niewiadomska, Bettina Hause, Götz Hensel, Wolfgang Bilger","doi":"10.1007/s00425-025-04736-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>The DNA-binding protein WHIRLY1, sharing structural similarities with ferritin, plays a role in the formation of iron cofactor proteins within chloroplasts. Previous studies indicated that barley plants with a knockdown of HvWHIRLY1 containing a minimal amount of the protein are compromised in chloroplast development and photosynthesis, and get chlorotic leaves when grown at high irradiance. Thereby, the leaves display signs of iron deficiency. Metal determination revealed, however, that leaves of WHIRLY1-deficient plants had a regular iron content. Nevertheless, WHIRLY1-deficiency affected the functionality of photosystem II less than that of photosystem I, which has a higher demand for iron. Immunological analyses revealed that components of both photosystems had reduced levels. Additionally, the levels of other chloroplast proteins containing different classes of iron cofactors were lower in the WHIRLY1-deficient plants compared to the wild type. In contrast, the level of the iron sequestering protein ferritin increased in WHIRLY1-deficient lines, whereby high irradiance intensified this effect. RNA analyses showed that the upregulation of ferritin coincided with an enhanced expression of the corresponding gene, reflecting an apparent overload of chloroplasts with free iron. Ferritin and WHIRLY proteins are known to share the same oligomeric structure. Therefore, the high abundance of ferritin in WHIRLY1-deficient plants might be a compensation for the reduced abundance of WHIRLY1. Enhanced expression levels of genes encoding photosynthesis proteins and iron cofactor proteins indicate a demand for protein formation or assembly of protein complexes. The results support a general role of WHIRLY1 in assembly and/or stabilization of chloroplast proteins and, moreover, suggest a specific function in sequestering and supply of iron in chloroplasts.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"262 2","pages":"32"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-025-04736-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Main conclusion: The DNA-binding protein WHIRLY1, sharing structural similarities with ferritin, plays a role in the formation of iron cofactor proteins within chloroplasts. Previous studies indicated that barley plants with a knockdown of HvWHIRLY1 containing a minimal amount of the protein are compromised in chloroplast development and photosynthesis, and get chlorotic leaves when grown at high irradiance. Thereby, the leaves display signs of iron deficiency. Metal determination revealed, however, that leaves of WHIRLY1-deficient plants had a regular iron content. Nevertheless, WHIRLY1-deficiency affected the functionality of photosystem II less than that of photosystem I, which has a higher demand for iron. Immunological analyses revealed that components of both photosystems had reduced levels. Additionally, the levels of other chloroplast proteins containing different classes of iron cofactors were lower in the WHIRLY1-deficient plants compared to the wild type. In contrast, the level of the iron sequestering protein ferritin increased in WHIRLY1-deficient lines, whereby high irradiance intensified this effect. RNA analyses showed that the upregulation of ferritin coincided with an enhanced expression of the corresponding gene, reflecting an apparent overload of chloroplasts with free iron. Ferritin and WHIRLY proteins are known to share the same oligomeric structure. Therefore, the high abundance of ferritin in WHIRLY1-deficient plants might be a compensation for the reduced abundance of WHIRLY1. Enhanced expression levels of genes encoding photosynthesis proteins and iron cofactor proteins indicate a demand for protein formation or assembly of protein complexes. The results support a general role of WHIRLY1 in assembly and/or stabilization of chloroplast proteins and, moreover, suggest a specific function in sequestering and supply of iron in chloroplasts.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.