{"title":"Optimal switching strategies for navigation in stochastic settings.","authors":"Francesco Mori, L Mahadevan","doi":"10.1098/rsif.2024.0677","DOIUrl":null,"url":null,"abstract":"<p><p>When navigating complex environments, animals often combine multiple strategies to mitigate the effects of external disturbances. These modalities often correspond to different sources of information, leading to speed - accuracy trade-offs. Inspired by the intermittent reorientation strategy seen in the behaviour of the dung beetle, we consider the problem of the navigation strategy of a correlated random walker moving in two dimensions. We assume that the heading of the walker can be reoriented to the preferred direction by paying a fixed cost as it tries to maximize its total displacement in a fixed direction. Using optimal control theory, we derive analytically and confirm numerically the strategy that maximizes the walker's speed, and show that the average time between reorientations scales inversely with the magnitude of the environmental noise. We then extend our framework to describe execution errors and sensory acquisition noise. As a result, we provide a range of testable predictions and suggest new experimental directions. Our approach may be amenable to other navigation problems involving multiple sensory modalities that require switching between egocentric and geocentric strategies.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240677"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0677","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
When navigating complex environments, animals often combine multiple strategies to mitigate the effects of external disturbances. These modalities often correspond to different sources of information, leading to speed - accuracy trade-offs. Inspired by the intermittent reorientation strategy seen in the behaviour of the dung beetle, we consider the problem of the navigation strategy of a correlated random walker moving in two dimensions. We assume that the heading of the walker can be reoriented to the preferred direction by paying a fixed cost as it tries to maximize its total displacement in a fixed direction. Using optimal control theory, we derive analytically and confirm numerically the strategy that maximizes the walker's speed, and show that the average time between reorientations scales inversely with the magnitude of the environmental noise. We then extend our framework to describe execution errors and sensory acquisition noise. As a result, we provide a range of testable predictions and suggest new experimental directions. Our approach may be amenable to other navigation problems involving multiple sensory modalities that require switching between egocentric and geocentric strategies.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.