Optimal switching strategies for navigation in stochastic settings.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-06-01 Epub Date: 2025-06-18 DOI:10.1098/rsif.2024.0677
Francesco Mori, L Mahadevan
{"title":"Optimal switching strategies for navigation in stochastic settings.","authors":"Francesco Mori, L Mahadevan","doi":"10.1098/rsif.2024.0677","DOIUrl":null,"url":null,"abstract":"<p><p>When navigating complex environments, animals often combine multiple strategies to mitigate the effects of external disturbances. These modalities often correspond to different sources of information, leading to speed - accuracy trade-offs. Inspired by the intermittent reorientation strategy seen in the behaviour of the dung beetle, we consider the problem of the navigation strategy of a correlated random walker moving in two dimensions. We assume that the heading of the walker can be reoriented to the preferred direction by paying a fixed cost as it tries to maximize its total displacement in a fixed direction. Using optimal control theory, we derive analytically and confirm numerically the strategy that maximizes the walker's speed, and show that the average time between reorientations scales inversely with the magnitude of the environmental noise. We then extend our framework to describe execution errors and sensory acquisition noise. As a result, we provide a range of testable predictions and suggest new experimental directions. Our approach may be amenable to other navigation problems involving multiple sensory modalities that require switching between egocentric and geocentric strategies.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240677"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0677","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

When navigating complex environments, animals often combine multiple strategies to mitigate the effects of external disturbances. These modalities often correspond to different sources of information, leading to speed - accuracy trade-offs. Inspired by the intermittent reorientation strategy seen in the behaviour of the dung beetle, we consider the problem of the navigation strategy of a correlated random walker moving in two dimensions. We assume that the heading of the walker can be reoriented to the preferred direction by paying a fixed cost as it tries to maximize its total displacement in a fixed direction. Using optimal control theory, we derive analytically and confirm numerically the strategy that maximizes the walker's speed, and show that the average time between reorientations scales inversely with the magnitude of the environmental noise. We then extend our framework to describe execution errors and sensory acquisition noise. As a result, we provide a range of testable predictions and suggest new experimental directions. Our approach may be amenable to other navigation problems involving multiple sensory modalities that require switching between egocentric and geocentric strategies.

随机环境下导航的最优切换策略。
当在复杂的环境中导航时,动物经常结合多种策略来减轻外部干扰的影响。这些模式通常对应于不同的信息来源,导致速度和准确性的权衡。受屎壳郎行为中的间歇性重新定向策略的启发,我们考虑了一个在二维空间中移动的相关随机步行者的导航策略问题。我们假设,当行走者试图在固定方向上最大化其总位移时,通过支付固定成本,可以将其航向重新定向到首选方向。利用最优控制理论,分析并数值验证了步行者速度最大化的策略,并证明了重新定向的平均时间与环境噪声的大小成反比。然后我们扩展我们的框架来描述执行错误和感觉获取噪声。因此,我们提供了一系列可测试的预测,并提出了新的实验方向。我们的方法可能适用于其他涉及多种感官模式的导航问题,这些问题需要在自我中心和地理中心策略之间切换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信