Geometry-induced competitive release in a meta-population model of range expansions in disordered environments.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-06-01 Epub Date: 2025-06-18 DOI:10.1098/rsif.2024.0698
Jimmy Gonzalez Nuñez, Daniel Beller
{"title":"Geometry-induced competitive release in a meta-population model of range expansions in disordered environments.","authors":"Jimmy Gonzalez Nuñez, Daniel Beller","doi":"10.1098/rsif.2024.0698","DOIUrl":null,"url":null,"abstract":"<p><p>Rare evolutionary events, such as the rise to prominence of deleterious mutations, can have drastic impacts on the evolution of growing populations. Heterogeneous environments may reduce the influence of selection on evolutionary outcomes through various mechanisms, including pinning of genetic lineages and of the population fronts. These effects play significant roles in enabling competitive release of otherwise trapped mutations. In this study, we show that environments containing random arrangements of 'hotspot' patches, where locally abundant resources enhance growth rates equally for all sub-populations, give rise to massively enriched deleterious mutant clones. We derive a geometrical optics description of mutant bubbles, which result from interactions with hotspots, which successfully predicts the observed increase in mutant survival. This prediction requires no fitting parameters and holds well in scenarios of rare mutations and of adaptation from standing variation. In addition, we find that the influence of environmental noise in shaping the fate of rare mutations is maximal near a percolation transition of overlapping discs, beyond which mutant survival decreases.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 227","pages":"20240698"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0698","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rare evolutionary events, such as the rise to prominence of deleterious mutations, can have drastic impacts on the evolution of growing populations. Heterogeneous environments may reduce the influence of selection on evolutionary outcomes through various mechanisms, including pinning of genetic lineages and of the population fronts. These effects play significant roles in enabling competitive release of otherwise trapped mutations. In this study, we show that environments containing random arrangements of 'hotspot' patches, where locally abundant resources enhance growth rates equally for all sub-populations, give rise to massively enriched deleterious mutant clones. We derive a geometrical optics description of mutant bubbles, which result from interactions with hotspots, which successfully predicts the observed increase in mutant survival. This prediction requires no fitting parameters and holds well in scenarios of rare mutations and of adaptation from standing variation. In addition, we find that the influence of environmental noise in shaping the fate of rare mutations is maximal near a percolation transition of overlapping discs, beyond which mutant survival decreases.

无序环境中范围扩展的元种群模型中几何诱导的竞争性释放。
罕见的进化事件,如有害突变的突出,可能对不断增长的种群的进化产生巨大影响。异质环境可能通过各种机制减少选择对进化结果的影响,包括固定遗传谱系和种群前沿。这些效应在竞争性释放突变中起着重要作用。在这项研究中,我们表明,包含随机排列的“热点”斑块的环境中,当地丰富的资源平等地提高了所有亚种群的生长速度,从而产生了大量富集的有害突变克隆。我们推导了突变体气泡的几何光学描述,这是由热点相互作用产生的,它成功地预测了观察到的突变体存活率的增加。这种预测不需要拟合参数,并且在罕见突变和长期变异适应的情况下保持良好。此外,我们发现环境噪声对形成罕见突变命运的影响在重叠盘的渗透过渡附近最大,超过该过渡,突变体存活率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信