Development and optimisation of esculin-loaded chitosan microspheres for intravitreal injection.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Ning He, Danqing Wu, Rui Luo, Ziqin Cao, Shuang Shan, Qingsong Fei, Jiabao Wu, Shaoyun Bai
{"title":"Development and optimisation of esculin-loaded chitosan microspheres for intravitreal injection.","authors":"Ning He, Danqing Wu, Rui Luo, Ziqin Cao, Shuang Shan, Qingsong Fei, Jiabao Wu, Shaoyun Bai","doi":"10.1080/02652048.2025.2515840","DOIUrl":null,"url":null,"abstract":"<p><p>This study was to prepare the esculin-loaded chitosan microspheres for intravitreal injection and explore the feasibility of the treatment of macular degeneration. The microspheres were fabricated using an emulsification crosslinking technique. The drug loading, encapsulation efficiency, and mean particle diameter of the optimised esculin-loaded chitosan microspheres were 8.03 ± 1.30%, 93.03 ± 2.16%, and 4.81 ± 1.60 μm, respectively. The thermal stability evaluation at 25 °C demonstrated consistent particle diameter maintenance, with microspheres retaining sizes of 4.73 ± 1.75 μm and 4.89 ± 1.55 μm after 15 and 30 days' storage periods, respectively. The <i>in vitro</i> release profile demonstrated 80% cumulative drug release from the microspheres over a 72 h period. Subsequent pharmacokinetic analysis revealed significantly enhanced parameters in the vitreous humour following intravitreal administration, with the half-life (<i>t</i><sub>1/2</sub>) reaching 879.88 ± 44.00 min and the area under curve (<i>AUC</i>) attaining 150.18 ± 2.28 × 10<sup>3</sup> mg·min/mL. Intravitreal injection of esculin-loaded chitosan microspheres offers a promising drug delivery system for the treatment of macular degeneration.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":" ","pages":"1-20"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2025.2515840","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study was to prepare the esculin-loaded chitosan microspheres for intravitreal injection and explore the feasibility of the treatment of macular degeneration. The microspheres were fabricated using an emulsification crosslinking technique. The drug loading, encapsulation efficiency, and mean particle diameter of the optimised esculin-loaded chitosan microspheres were 8.03 ± 1.30%, 93.03 ± 2.16%, and 4.81 ± 1.60 μm, respectively. The thermal stability evaluation at 25 °C demonstrated consistent particle diameter maintenance, with microspheres retaining sizes of 4.73 ± 1.75 μm and 4.89 ± 1.55 μm after 15 and 30 days' storage periods, respectively. The in vitro release profile demonstrated 80% cumulative drug release from the microspheres over a 72 h period. Subsequent pharmacokinetic analysis revealed significantly enhanced parameters in the vitreous humour following intravitreal administration, with the half-life (t1/2) reaching 879.88 ± 44.00 min and the area under curve (AUC) attaining 150.18 ± 2.28 × 103 mg·min/mL. Intravitreal injection of esculin-loaded chitosan microspheres offers a promising drug delivery system for the treatment of macular degeneration.

玻璃体内注射用载内皮素壳聚糖微球的研制与优化。
本研究旨在制备载内皮素壳聚糖微球用于玻璃体内注射,探讨其治疗黄斑变性的可行性。采用乳化交联技术制备微球。优化后的壳聚糖微球载药量为8.03±1.30%,包封率为93.03±2.16%,平均粒径为4.81±1.60 μm。25°C时的热稳定性评价表明,在15天和30天后,微球的粒径保持一致,分别为4.73±1.75 μm和4.89±1.55 μm。体外释放谱显示,微球在72小时内累积释放80%的药物。随后的药代动力学分析显示,玻璃体内给药后,玻璃体内各参数明显增强,半衰期(t1/2)达到879.88±44.00 min,曲线下面积(AUC)达到150.18±2.28 × 103 mg·min/mL。壳聚糖微球玻璃体内注射是治疗黄斑变性的一种很有前途的药物传递系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信