Role of the Pho regulon and genetic reconstruction of a phosphite-dependent Escherichia coli.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Naoki Momokawa, Takeshi Ikeda, Takenori Ishida, Kaori Nimura-Matsune, Hisakage Funabashi, Satoru Watanabe, Akio Kuroda, Ryuichi Hirota
{"title":"Role of the Pho regulon and genetic reconstruction of a phosphite-dependent Escherichia coli.","authors":"Naoki Momokawa, Takeshi Ikeda, Takenori Ishida, Kaori Nimura-Matsune, Hisakage Funabashi, Satoru Watanabe, Akio Kuroda, Ryuichi Hirota","doi":"10.1016/j.jbiosc.2025.05.012","DOIUrl":null,"url":null,"abstract":"<p><p>A phosphite (Pt)-dependent biological containment strategy, achieved by introducing a Pt-metabolic pathway and disrupting endogenous phosphate transporters, renders Escherichia coli growth strictly dependent on Pt, a compound rarely detected in natural environments, thereby preventing unintended environmental spread. In this study, we demonstrated that expression of phosphate regulon (Pho regulon) genes was markedly upregulated in a Pt-dependent E. coli strain due to the elimination of phoU, a negative regulator of the Pho regulon, along with the high-affinity phosphate transporter pstSCAB. However, further genetic modification of this strain for detailed analysis was hindered by the presence of multiple antibiotic resistance markers. To overcome this limitation, we reconstructed a Pt-dependent E. coli strain using CRISPR-Cas12a-mediated genome editing, enabling the removal of the antibiotic resistance markers and facilitating subsequent genetic manipulation. Using this strain, we disrupted the PhoBR two-component regulatory genes and found that deletion of phoBR alleviated the constitutive overexpression of Pho regulon genes and partially restored growth of the Pt-dependent strain. These findings provide mechanistic insights and technical advances for the refinement and practical application of Pt-dependent biocontainment strategy.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2025.05.012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A phosphite (Pt)-dependent biological containment strategy, achieved by introducing a Pt-metabolic pathway and disrupting endogenous phosphate transporters, renders Escherichia coli growth strictly dependent on Pt, a compound rarely detected in natural environments, thereby preventing unintended environmental spread. In this study, we demonstrated that expression of phosphate regulon (Pho regulon) genes was markedly upregulated in a Pt-dependent E. coli strain due to the elimination of phoU, a negative regulator of the Pho regulon, along with the high-affinity phosphate transporter pstSCAB. However, further genetic modification of this strain for detailed analysis was hindered by the presence of multiple antibiotic resistance markers. To overcome this limitation, we reconstructed a Pt-dependent E. coli strain using CRISPR-Cas12a-mediated genome editing, enabling the removal of the antibiotic resistance markers and facilitating subsequent genetic manipulation. Using this strain, we disrupted the PhoBR two-component regulatory genes and found that deletion of phoBR alleviated the constitutive overexpression of Pho regulon genes and partially restored growth of the Pt-dependent strain. These findings provide mechanistic insights and technical advances for the refinement and practical application of Pt-dependent biocontainment strategy.

Pho调控子的作用和亚磷酸依赖大肠杆菌的基因重建。
通过引入Pt代谢途径和破坏内源性磷酸盐转运体,实现了亚磷酸盐(Pt)依赖性生物遏制策略,使大肠杆菌生长严格依赖于Pt,这是一种在自然环境中很少检测到的化合物,从而防止意外的环境传播。在这项研究中,我们证明了磷酸调节子(Pho调节子)基因的表达在pt依赖的大肠杆菌菌株中显著上调,这是由于Pho调节子的负调节因子phoU和高亲和磷酸转运蛋白pstSCAB的消除。然而,由于存在多种抗生素耐药性标记,对该菌株进行进一步的遗传修饰以进行详细分析受到阻碍。为了克服这一限制,我们使用crispr - cas12a介导的基因组编辑技术重建了一株依赖pt的大肠杆菌菌株,从而能够去除抗生素耐药性标记并促进随后的遗传操作。利用该菌株,我们破坏了PhoBR双组分调控基因,发现PhoBR的缺失减轻了Pho调控基因的组成性过表达,部分恢复了pt依赖菌株的生长。这些发现为pt依赖性生物控制策略的改进和实际应用提供了机理见解和技术进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信