{"title":"Integrated multidisciplinary approach to aneurysm hemodynamic analysis: numerical simulation, <i>in Vitro</i> experiment, and deep learning.","authors":"Tingting Fan, Jinhang Wang, Xu Wang, Xi Chen, Dongliang Zhao, Fengjie Xie, Guangxin Chen","doi":"10.3389/fbioe.2025.1602190","DOIUrl":null,"url":null,"abstract":"<p><p>Aneurysm, as life-threatening vascular pathologies, are significantly influenced by hemodynamic factors in their development. The combine of numerical simulation and <i>in vitro</i> experiment have laid the foundation for high-precision hemodynamic analysis, while the integration of deep learning technologies has significantly enhanced computational efficiency. However, current researches still face challenges such as limitations in biomimetic materials, and incomplete understanding of mechano-biological coupling mechanisms. In this review, we systematize traditional and emerging methodologies characterizing hemodynamic perturbations across the pathophysiological continuum of aneurysmal expansion, rupture, and thrombosis progression. This review aims to (1) elucidate mechanistic underpinnings of aneurysm destabilization, (2) inspire people to establish standardized quantification protocols for hemodynamic analysis, and (3) pave the way for patient-specific risk stratification enabling data-driven clinical interventions.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1602190"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1602190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aneurysm, as life-threatening vascular pathologies, are significantly influenced by hemodynamic factors in their development. The combine of numerical simulation and in vitro experiment have laid the foundation for high-precision hemodynamic analysis, while the integration of deep learning technologies has significantly enhanced computational efficiency. However, current researches still face challenges such as limitations in biomimetic materials, and incomplete understanding of mechano-biological coupling mechanisms. In this review, we systematize traditional and emerging methodologies characterizing hemodynamic perturbations across the pathophysiological continuum of aneurysmal expansion, rupture, and thrombosis progression. This review aims to (1) elucidate mechanistic underpinnings of aneurysm destabilization, (2) inspire people to establish standardized quantification protocols for hemodynamic analysis, and (3) pave the way for patient-specific risk stratification enabling data-driven clinical interventions.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.