Kanghwi Lee, Jong Hyuk Lee, Seok Young Koh, Hyungin Park, Jin Mo Goo
{"title":"Risk factors and prognostic indicators for progressive fibrosing interstitial lung disease: a deep learning-based CT quantification approach.","authors":"Kanghwi Lee, Jong Hyuk Lee, Seok Young Koh, Hyungin Park, Jin Mo Goo","doi":"10.1007/s00330-025-11714-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To investigate the value of deep learning-based quantitative CT (QCT) in predicting progressive fibrosing interstitial lung disease (PF-ILD) and assessing prognosis.</p><p><strong>Materials and methods: </strong>This single-center retrospective study included ILD patients with CT examinations between January 2015 and June 2021. Each ILD finding (ground-glass opacity (GGO), reticular opacity (RO), honeycombing) and fibrosis (sum of RO and honeycombing) was quantified from baseline and follow-up CTs. Logistic regression was performed to identify predictors of PF-ILD, defined as radiologic progression along with forced vital capacity (FVC) decline ≥ 5% predicted. Cox proportional hazard regression was used to assess mortality. The added value of incorporating QCT into FVC was evaluated using C-index.</p><p><strong>Results: </strong>Among 465 ILD patients (median age [IQR], 65 [58-71] years; 238 men), 148 had PF-ILD. After adjusting for clinico-radiological variables, baseline RO (OR: 1.096, 95% CI: 1.042, 1.152, p < 0.001) and fibrosis extent (OR: 1.035, 95% CI: 1.004, 1.067, p = 0.025) were PF-ILD predictors. Baseline RO (HR: 1.063, 95% CI: 1.013, 1.115, p = 0.013), honeycombing (HR: 1.074, 95% CI: 1.034, 1.116, p < 0.001), and fibrosis extent (HR: 1.067, 95% CI: 1.043, 1.093, p < 0.001) predicted poor prognosis. The Cox models combining baseline percent predicted FVC with QCT (each ILD finding, C-index: 0.714, 95% CI: 0.660, 0.764; fibrosis, C-index: 0.703, 95% CI: 0.649, 0.752; both p-values < 0.001) outperformed the model without QCT (C-index: 0.545, 95% CI: 0.500, 0.599).</p><p><strong>Conclusion: </strong>Deep learning-based QCT for ILD findings is useful for predicting PF-ILD and its prognosis.</p><p><strong>Key points: </strong>Question Does deep learning-based CT quantification of interstitial lung disease (ILD) findings have value in predicting progressive fibrosing ILD (PF-ILD) and improving prognostication? Findings Deep learning-based CT quantification of baseline reticular opacity and fibrosis predicted the development of PF-ILD. In addition, CT quantification demonstrated value in predicting all-cause mortality. Clinical relevance Deep learning-based CT quantification of ILD findings is useful for predicting PF-ILD and its prognosis. Identifying patients at high risk of PF-ILD through CT quantification enables closer monitoring and earlier treatment initiation, which may lead to improved clinical outcomes.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11714-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To investigate the value of deep learning-based quantitative CT (QCT) in predicting progressive fibrosing interstitial lung disease (PF-ILD) and assessing prognosis.
Materials and methods: This single-center retrospective study included ILD patients with CT examinations between January 2015 and June 2021. Each ILD finding (ground-glass opacity (GGO), reticular opacity (RO), honeycombing) and fibrosis (sum of RO and honeycombing) was quantified from baseline and follow-up CTs. Logistic regression was performed to identify predictors of PF-ILD, defined as radiologic progression along with forced vital capacity (FVC) decline ≥ 5% predicted. Cox proportional hazard regression was used to assess mortality. The added value of incorporating QCT into FVC was evaluated using C-index.
Results: Among 465 ILD patients (median age [IQR], 65 [58-71] years; 238 men), 148 had PF-ILD. After adjusting for clinico-radiological variables, baseline RO (OR: 1.096, 95% CI: 1.042, 1.152, p < 0.001) and fibrosis extent (OR: 1.035, 95% CI: 1.004, 1.067, p = 0.025) were PF-ILD predictors. Baseline RO (HR: 1.063, 95% CI: 1.013, 1.115, p = 0.013), honeycombing (HR: 1.074, 95% CI: 1.034, 1.116, p < 0.001), and fibrosis extent (HR: 1.067, 95% CI: 1.043, 1.093, p < 0.001) predicted poor prognosis. The Cox models combining baseline percent predicted FVC with QCT (each ILD finding, C-index: 0.714, 95% CI: 0.660, 0.764; fibrosis, C-index: 0.703, 95% CI: 0.649, 0.752; both p-values < 0.001) outperformed the model without QCT (C-index: 0.545, 95% CI: 0.500, 0.599).
Conclusion: Deep learning-based QCT for ILD findings is useful for predicting PF-ILD and its prognosis.
Key points: Question Does deep learning-based CT quantification of interstitial lung disease (ILD) findings have value in predicting progressive fibrosing ILD (PF-ILD) and improving prognostication? Findings Deep learning-based CT quantification of baseline reticular opacity and fibrosis predicted the development of PF-ILD. In addition, CT quantification demonstrated value in predicting all-cause mortality. Clinical relevance Deep learning-based CT quantification of ILD findings is useful for predicting PF-ILD and its prognosis. Identifying patients at high risk of PF-ILD through CT quantification enables closer monitoring and earlier treatment initiation, which may lead to improved clinical outcomes.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.