Skyler R St Pierre, Lauren Somersille Sibley, Steven Tran, Vy Tran, Ethan C Darwin, Ellen Kuhl
{"title":"Biaxial testing and sensory texture evaluation of plant-based and animal deli meat.","authors":"Skyler R St Pierre, Lauren Somersille Sibley, Steven Tran, Vy Tran, Ethan C Darwin, Ellen Kuhl","doi":"10.1016/j.crfs.2025.101080","DOIUrl":null,"url":null,"abstract":"<p><p>Animal agriculture is one of the largest contributors to global carbon emissions. Plant-based meats offer a sustainable alternative to animal meat; yet, people are reluctant to switch their diets and spending habits, in large part due to the taste and texture of plant-based meats. Deli meat is a convenient form of protein commonly used in sandwiches, yet little is known about its material or sensory properties. Here we performed biaxial testing with multiple different stretch ratios of four plant-based and four animal deli meats, fit the neo Hooke and Mooney Rivlin models to the resulting stress-stretch data, and discovered the best constitutive models for all eight products. Strikingly, the plant-based products, turkey, ham, deli, and prosciutto, with stiffnesses of 378 ± 15 kPa, 343 ± 62 kPa, 213 ± 25 kPa, and 113 ± 56 kPa, were more than twice as stiff as their animal counterparts, turkey, chicken, ham, and prosciutto, with 134 ± 46 kPa, 117 ± 17 kPa, 117 ± 21 kPa, and 49 ± 21 kPa. In a complementary sensory texture survey, n = 18 participants were able to correlate the physical stiffness with the sensory brittleness, with Spearman's correlation coefficient of <math><mrow><mi>ρ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>857</mn></mrow> </math> and <math><mrow><mi>p</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>011</mn></mrow> </math> , but not with the sensory softness or hardness. Notably, the participants perceived all four plant-based products as less fibrous, less moist, and less meaty than the four animal products. Our study confirms the common belief that plant-based products struggle to meet the physical and sensory signature of animal deli meats. We anticipate that integrating rigorous mechanical testing, physics-based modeling, and sensory texture surveys could shape the path towards designing delicious, nutritious, and environmentally friendly meats that mimic the texture and mouthfeel of animal products and are healthy for people and for the planet. Data and code are freely available at https://github.com/LivingMatterLab/CANN.</p>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"101080"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.crfs.2025.101080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal agriculture is one of the largest contributors to global carbon emissions. Plant-based meats offer a sustainable alternative to animal meat; yet, people are reluctant to switch their diets and spending habits, in large part due to the taste and texture of plant-based meats. Deli meat is a convenient form of protein commonly used in sandwiches, yet little is known about its material or sensory properties. Here we performed biaxial testing with multiple different stretch ratios of four plant-based and four animal deli meats, fit the neo Hooke and Mooney Rivlin models to the resulting stress-stretch data, and discovered the best constitutive models for all eight products. Strikingly, the plant-based products, turkey, ham, deli, and prosciutto, with stiffnesses of 378 ± 15 kPa, 343 ± 62 kPa, 213 ± 25 kPa, and 113 ± 56 kPa, were more than twice as stiff as their animal counterparts, turkey, chicken, ham, and prosciutto, with 134 ± 46 kPa, 117 ± 17 kPa, 117 ± 21 kPa, and 49 ± 21 kPa. In a complementary sensory texture survey, n = 18 participants were able to correlate the physical stiffness with the sensory brittleness, with Spearman's correlation coefficient of and , but not with the sensory softness or hardness. Notably, the participants perceived all four plant-based products as less fibrous, less moist, and less meaty than the four animal products. Our study confirms the common belief that plant-based products struggle to meet the physical and sensory signature of animal deli meats. We anticipate that integrating rigorous mechanical testing, physics-based modeling, and sensory texture surveys could shape the path towards designing delicious, nutritious, and environmentally friendly meats that mimic the texture and mouthfeel of animal products and are healthy for people and for the planet. Data and code are freely available at https://github.com/LivingMatterLab/CANN.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.