Chun Hoe Tan, Haresh Sivakumar, Da-Gui Luo, Yu-Xin Cen
{"title":"Integrative Network Pharmacology and Molecular Docking Analyses on the Mechanisms of San-Zhong-Kui-Jian-Tang in Treating Oral Squamous Cell Carcinoma.","authors":"Chun Hoe Tan, Haresh Sivakumar, Da-Gui Luo, Yu-Xin Cen","doi":"10.1007/s11596-025-00067-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Oral squamous cell carcinoma (OSCC) is an aggressive cancer with a high mortality rate. San-Zhong-Kui-Jian-Tang (SZKJT), a Chinese herbal formula, has long been used as an adjuvant therapy in cancer clinical practice. Although its therapeutic effects and molecular mechanisms in OSCC have been previously elucidated, the potential interactions and mechanisms between the active phytochemicals and their therapeutic targets are still lacking.</p><p><strong>Methods: </strong>The present study employed network pharmacology and topology approaches to establish a \"herbal ingredients-active phytochemicals-target interaction\" network to explore the potential therapeutic targets of SZKJT-active phytochemicals in the treatment of OSCC. The role of the target proteins in oncogenesis was assessed via GO and KEGG enrichment analyses, and their interactions with the active phytochemicals of SZKJT were calculated via molecular docking and dynamic simulations. The pharmacokinetic properties and toxicity of the active phytochemicals were also predicted. RESULTS: A total of 171 active phytochemicals of SZKJT fulfilled the bioavailability and drug-likeness screening criteria, with the flavonoids quercetin, kaempferol, and naringenin having the greatest potential. The 4 crucial targets of these active phytochemicals are PTGS2, TNF, BCL2, and CASP3, which encode cyclooxygenase-2, tumor necrosis factor (TNF), BCL-2 apoptosis regulator, and caspase-3, respectively. The interactions between phytochemicals and target proteins were predicted to be thermodynamically feasible and stable via molecular docking and dynamics simulations. Finally, the results revealed that the IL-6/JAK/STAT3 pathway and TNF signaling via NF-κB are the two prominent pathways targeted by SZKJT.</p><p><strong>Conclusion: </strong>In summary, this study provides computational data for in-depth exploration of the mechanism by which SZKJT activates phytochemicals to treat OSCC.</p>","PeriodicalId":10820,"journal":{"name":"Current Medical Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11596-025-00067-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Oral squamous cell carcinoma (OSCC) is an aggressive cancer with a high mortality rate. San-Zhong-Kui-Jian-Tang (SZKJT), a Chinese herbal formula, has long been used as an adjuvant therapy in cancer clinical practice. Although its therapeutic effects and molecular mechanisms in OSCC have been previously elucidated, the potential interactions and mechanisms between the active phytochemicals and their therapeutic targets are still lacking.
Methods: The present study employed network pharmacology and topology approaches to establish a "herbal ingredients-active phytochemicals-target interaction" network to explore the potential therapeutic targets of SZKJT-active phytochemicals in the treatment of OSCC. The role of the target proteins in oncogenesis was assessed via GO and KEGG enrichment analyses, and their interactions with the active phytochemicals of SZKJT were calculated via molecular docking and dynamic simulations. The pharmacokinetic properties and toxicity of the active phytochemicals were also predicted. RESULTS: A total of 171 active phytochemicals of SZKJT fulfilled the bioavailability and drug-likeness screening criteria, with the flavonoids quercetin, kaempferol, and naringenin having the greatest potential. The 4 crucial targets of these active phytochemicals are PTGS2, TNF, BCL2, and CASP3, which encode cyclooxygenase-2, tumor necrosis factor (TNF), BCL-2 apoptosis regulator, and caspase-3, respectively. The interactions between phytochemicals and target proteins were predicted to be thermodynamically feasible and stable via molecular docking and dynamics simulations. Finally, the results revealed that the IL-6/JAK/STAT3 pathway and TNF signaling via NF-κB are the two prominent pathways targeted by SZKJT.
Conclusion: In summary, this study provides computational data for in-depth exploration of the mechanism by which SZKJT activates phytochemicals to treat OSCC.
期刊介绍:
Current Medical Science provides a forum for peer-reviewed papers in the medical sciences, to promote academic exchange between Chinese researchers and doctors and their foreign counterparts. The journal covers the subjects of biomedicine such as physiology, biochemistry, molecular biology, pharmacology, pathology and pathophysiology, etc., and clinical research, such as surgery, internal medicine, obstetrics and gynecology, pediatrics and otorhinolaryngology etc. The articles appearing in Current Medical Science are mainly in English, with a very small number of its papers in German, to pay tribute to its German founder. This journal is the only medical periodical in Western languages sponsored by an educational institution located in the central part of China.