Multidimensional Engineering Strategies for Transition Metal Selenide Electrocatalysts in Water Electrolysis with Performance Optimization Mechanisms and Future Perspectives.

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huiya Zhou, Zhekai Zhang, Qihao Zhang, Boyao Zhang, Xin Li, Song-Lin Xu, Rong-Da Zhao, Xinming Zhao, De-Peng Zhao, Menggang Li, Fu-Fa Wu
{"title":"Multidimensional Engineering Strategies for Transition Metal Selenide Electrocatalysts in Water Electrolysis with Performance Optimization Mechanisms and Future Perspectives.","authors":"Huiya Zhou, Zhekai Zhang, Qihao Zhang, Boyao Zhang, Xin Li, Song-Lin Xu, Rong-Da Zhao, Xinming Zhao, De-Peng Zhao, Menggang Li, Fu-Fa Wu","doi":"10.1002/tcr.202500082","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen energy, as a carbon-neutral, high-energy-density renewable clean energy source, is recognized as an ideal alternative to fossil fuels. Although water electrolysis has emerged as a core technology for hydrogen production, its advancement remains constrained by the exorbitant cost, scarcity, and inadequate stability of precious metal catalysts. Transition metal selenides (TMSes) has emerged as promising electrocatalytic materials due to their combined advantages of low cost, tunable electronic structures, and intrinsic activity comparable to noble metals. This review focuses on multidimensional engineering strategies to systematically analyze the performance optimization mechanisms of TMSes in hydrogen evolution reaction and oxygen evolution reaction. Five key aspects are comprehensively discussed: conductive substrate engineering, interfacial synergy effects, crystal facet and morphology regulation, cation/anion doping strategies, and single-atom catalyst construction. Research demonstrates that the synergistic effects of multidimensional strategies can overcome the intrinsic limitations of TMSes, including restricted conductivity, active site passivation, and stability deficiencies. This establishes a theoretical framework for designing efficient-stable-low-cost water electrolysis catalysts. Future studies should integrate in situ characterization with machine learning-assisted computations to unveil the dynamic reaction interfaces and structural evolution patterns.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e2500082"},"PeriodicalIF":7.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202500082","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy, as a carbon-neutral, high-energy-density renewable clean energy source, is recognized as an ideal alternative to fossil fuels. Although water electrolysis has emerged as a core technology for hydrogen production, its advancement remains constrained by the exorbitant cost, scarcity, and inadequate stability of precious metal catalysts. Transition metal selenides (TMSes) has emerged as promising electrocatalytic materials due to their combined advantages of low cost, tunable electronic structures, and intrinsic activity comparable to noble metals. This review focuses on multidimensional engineering strategies to systematically analyze the performance optimization mechanisms of TMSes in hydrogen evolution reaction and oxygen evolution reaction. Five key aspects are comprehensively discussed: conductive substrate engineering, interfacial synergy effects, crystal facet and morphology regulation, cation/anion doping strategies, and single-atom catalyst construction. Research demonstrates that the synergistic effects of multidimensional strategies can overcome the intrinsic limitations of TMSes, including restricted conductivity, active site passivation, and stability deficiencies. This establishes a theoretical framework for designing efficient-stable-low-cost water electrolysis catalysts. Future studies should integrate in situ characterization with machine learning-assisted computations to unveil the dynamic reaction interfaces and structural evolution patterns.

水电解过渡金属硒化电催化剂的多维工程策略、性能优化机制及未来展望。
氢能作为一种碳中性、高能量密度的可再生清洁能源,被公认为化石燃料的理想替代品。尽管水电解已经成为制氢的核心技术,但其发展仍然受到贵金属催化剂成本过高、稀缺和稳定性不足的限制。过渡金属硒化物(TMSes)由于其具有成本低、电子结构可调以及与贵金属相媲美的固有活性等优点而成为一种很有前途的电催化材料。本文从多维工程策略出发,系统分析了TMSes在析氢反应和析氧反应中的性能优化机理。五个关键方面进行了全面的讨论:导电衬底工程,界面协同效应,晶面和形态调节,阳离子/阴离子掺杂策略和单原子催化剂结构。研究表明,多维策略的协同效应可以克服tmse固有的局限性,包括电导率受限、活性位点钝化和稳定性不足。这为设计高效、稳定、低成本的水电解催化剂奠定了理论基础。未来的研究应将原位表征与机器学习辅助计算相结合,以揭示动态反应界面和结构演化模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信