Dong Zhang, Wei Liu, Ting Sun, Yangyang Xiao, Qiuwen Chen, Xiao Huang, Xiaozhi Wang, Qian Qi, Hao Wang, Tao Wang
{"title":"FKBP5 Mediates Alveolar Fibroblast Necroptosis During Acute Respiratory Distress Syndrome.","authors":"Dong Zhang, Wei Liu, Ting Sun, Yangyang Xiao, Qiuwen Chen, Xiao Huang, Xiaozhi Wang, Qian Qi, Hao Wang, Tao Wang","doi":"10.1111/cpr.70075","DOIUrl":null,"url":null,"abstract":"<p><p>The inflammatory storm is a hallmark of acute respiratory distress syndrome (ARDS), yet effective therapies remain unavailable. FK506-binding protein 51 (FKBP5) has emerged as a regulator of inflammatory responses. In this study, FKBP5 expression was markedly increased in patients with sepsis and correlated with both cytokine levels and disease severity. Using sepsis-induced ARDS models in Fkbp5<sup>-/-</sup> and bone marrow chimeric mice, this study demonstrated that non-haematopoietic FKBP5 mitigates inflammatory injury. Single-cell transcriptomic analysis identified fibroblasts and epithelial cells as the primary sources of non-haematopoietic FKBP5 in the lung injury. Conditional deletion of FKBP5 in fibroblasts (Col1a2-iCre Fkbp5<sup>flox/flox</sup>) confirmed the essential role of fibroblast FKBP5 in the inflammatory response during ARDS. Mechanistically, FKBP5-mediated necroptosis of alveolar fibroblasts triggered NF-κB activation, proinflammatory cytokine release, neutrophil recruitment, and the establishment of an inflammatory microenvironment in alveolar epithelial tissue. These findings suggest a potential therapeutic strategy targeting fibroblast FKBP5 and provide a foundation for future clinical investigation in ARDS management.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70075"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The inflammatory storm is a hallmark of acute respiratory distress syndrome (ARDS), yet effective therapies remain unavailable. FK506-binding protein 51 (FKBP5) has emerged as a regulator of inflammatory responses. In this study, FKBP5 expression was markedly increased in patients with sepsis and correlated with both cytokine levels and disease severity. Using sepsis-induced ARDS models in Fkbp5-/- and bone marrow chimeric mice, this study demonstrated that non-haematopoietic FKBP5 mitigates inflammatory injury. Single-cell transcriptomic analysis identified fibroblasts and epithelial cells as the primary sources of non-haematopoietic FKBP5 in the lung injury. Conditional deletion of FKBP5 in fibroblasts (Col1a2-iCre Fkbp5flox/flox) confirmed the essential role of fibroblast FKBP5 in the inflammatory response during ARDS. Mechanistically, FKBP5-mediated necroptosis of alveolar fibroblasts triggered NF-κB activation, proinflammatory cytokine release, neutrophil recruitment, and the establishment of an inflammatory microenvironment in alveolar epithelial tissue. These findings suggest a potential therapeutic strategy targeting fibroblast FKBP5 and provide a foundation for future clinical investigation in ARDS management.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.