Optimization of pyrolysis conditions for Catha edulis waste-based biochar production using response surface methodology.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Abdi Birhanu, Abrha Mulu Hailu, Zemene Worku, Israel Tessema, Kenatu Angassa, Solomon Tibebu
{"title":"Optimization of pyrolysis conditions for Catha edulis waste-based biochar production using response surface methodology.","authors":"Abdi Birhanu, Abrha Mulu Hailu, Zemene Worku, Israel Tessema, Kenatu Angassa, Solomon Tibebu","doi":"10.1186/s40643-025-00866-9","DOIUrl":null,"url":null,"abstract":"<p><p>Catha edulis (Khat) waste (KW) is one of the challenging waste managements in Ethiopian urban areas. While biochar from other biomass sources has been studied, the effect of pyrolysis conditions on Catha edulis waste-based biochar yield and quality remains unexplored. Therefore, this study aims to optimize the biochar production process from Catha edulis waste for high yield and desirable characteristics. The KW and biochar were characterized using FTIR, BET, proximate analysis and other key parameters. The results indicated that KW possesses favorable properties for thermochemical conversion, with low ash content (4.35% wt. dry basis) and significant organic constituents (46.89% cellulose, 28.53% lignin, 19.62% hemicellulose, 4.96% extractives). The effect of pyrolysis process variables embracing reaction temperature, reaction time, and particle size on biochar yield and quality was optimized using response surface methodology (RSM) coupled with central composite design (CCD). The biochar was desirably characterized by a pH of 8.96, fixed carbon of 60.08%, ash content of 10.55%, and a yield of 45.12% at the optimum production processes of 390 °C, 44 min, and 0.7 mm particle size. Moreover, the study found that pyrolysis temperature was the most influential factor across all responses (yield and quality). Consequently, the biochar (yield and quality) was significantly (p < 0.05) influenced by pyrolysis temperature. In conclusion, the study inferred that KW holds substantial potential for biochar production with remarkable soil amendment characteristics.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"62"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00866-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Catha edulis (Khat) waste (KW) is one of the challenging waste managements in Ethiopian urban areas. While biochar from other biomass sources has been studied, the effect of pyrolysis conditions on Catha edulis waste-based biochar yield and quality remains unexplored. Therefore, this study aims to optimize the biochar production process from Catha edulis waste for high yield and desirable characteristics. The KW and biochar were characterized using FTIR, BET, proximate analysis and other key parameters. The results indicated that KW possesses favorable properties for thermochemical conversion, with low ash content (4.35% wt. dry basis) and significant organic constituents (46.89% cellulose, 28.53% lignin, 19.62% hemicellulose, 4.96% extractives). The effect of pyrolysis process variables embracing reaction temperature, reaction time, and particle size on biochar yield and quality was optimized using response surface methodology (RSM) coupled with central composite design (CCD). The biochar was desirably characterized by a pH of 8.96, fixed carbon of 60.08%, ash content of 10.55%, and a yield of 45.12% at the optimum production processes of 390 °C, 44 min, and 0.7 mm particle size. Moreover, the study found that pyrolysis temperature was the most influential factor across all responses (yield and quality). Consequently, the biochar (yield and quality) was significantly (p < 0.05) influenced by pyrolysis temperature. In conclusion, the study inferred that KW holds substantial potential for biochar production with remarkable soil amendment characteristics.

响应面法优化甜菜废弃物生物炭热解条件。
Catha edulis (Khat)废物(KW)是埃塞俄比亚城市地区具有挑战性的废物管理之一。虽然其他生物质来源的生物炭已经被研究过,但热解条件对Catha edulis废弃物生物炭产量和质量的影响仍未被探索。因此,本研究旨在优化利用Catha edulis废弃物生产生物炭的工艺,以获得高产率和理想的特性。利用FTIR、BET、近似分析等关键参数对KW和生物炭进行了表征。结果表明,KW具有良好的热化学转化性能,灰分含量低(干基为4.35%),有机成分含量高(纤维素46.89%,木质素28.53%,半纤维素19.62%,萃取物4.96%)。采用响应面法(RSM)结合中心复合设计(CCD)优化了反应温度、反应时间和粒径对生物炭产率和质量的影响。在390℃、44 min、0.7 mm的最佳工艺条件下,该生物炭的pH值为8.96,固定碳含量为60.08%,灰分含量为10.55%,产率为45.12%。此外,研究发现热解温度是所有响应(收率和质量)中影响最大的因素。因此,生物炭(产量和质量)显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信