Covariation between rotator cuff muscle quality and shoulder morphometric bony features in B-glenoids: a statistical modeling approach.

IF 3 3区 医学 Q2 BIOPHYSICS
Nazanin Daneshvarhashjin, Philippe Debeer, Harold Matthews, Peter Claes, Filip Verhaegen, Lennart Scheys
{"title":"Covariation between rotator cuff muscle quality and shoulder morphometric bony features in B-glenoids: a statistical modeling approach.","authors":"Nazanin Daneshvarhashjin, Philippe Debeer, Harold Matthews, Peter Claes, Filip Verhaegen, Lennart Scheys","doi":"10.1007/s10237-025-01947-6","DOIUrl":null,"url":null,"abstract":"<p><p>Rotator cuff muscle (RCM) degeneration, bone morphology, and humeral head subluxation (HHS) are known risk factors for failure of anatomic total shoulder arthroplasty in patients with B-glenoid shoulder osteoarthritis. Yet, the understanding of RCM asymmetry in these patients remains an area of active investigation, including its relation with other risk factors. We therefore aimed to characterize the variability of RCM degeneration in B-glenoids and analyze its covariation with scapular morphology and HHS. First, computed tomography images were used to quantify 3D RCM degeneration, including muscle atrophy and fatty infiltration, in sixty B-glenoids referenced against twenty-five healthy controls. Next, the 3D scapular shape of B-glenoids was quantified using a previously published statistical shape model. Thirdly, 3D HHS was quantified. Using dedicated correlation analyses covariation patterns were modeled between each of these risk factors. Results indicated that RCM degeneration in B-glenoids is primarily characterized by fatty infiltration, without any sign of asymmetric impact on the anterior versus posterior RCM. However, B-glenoids with asymmetric bone loss were found to have more RCM atrophy and fatty infiltration of the infraspinatus. We identified four significant patterns of RCM degeneration and scapular shape, explaining 90.3% of their correlation. The primary mode indicates an association between combined posterior glenoid erosion and coracoid rotation with an increased infraspinatus' fatty infiltration. Interestingly, this mode was also positively correlated with posterior HHS (r = 0.46, P < 0.01). Identification of such patterns can improve the accuracy of musculoskeletal models in predicting postoperative implant failure risks.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":"1141-1153"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-025-01947-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rotator cuff muscle (RCM) degeneration, bone morphology, and humeral head subluxation (HHS) are known risk factors for failure of anatomic total shoulder arthroplasty in patients with B-glenoid shoulder osteoarthritis. Yet, the understanding of RCM asymmetry in these patients remains an area of active investigation, including its relation with other risk factors. We therefore aimed to characterize the variability of RCM degeneration in B-glenoids and analyze its covariation with scapular morphology and HHS. First, computed tomography images were used to quantify 3D RCM degeneration, including muscle atrophy and fatty infiltration, in sixty B-glenoids referenced against twenty-five healthy controls. Next, the 3D scapular shape of B-glenoids was quantified using a previously published statistical shape model. Thirdly, 3D HHS was quantified. Using dedicated correlation analyses covariation patterns were modeled between each of these risk factors. Results indicated that RCM degeneration in B-glenoids is primarily characterized by fatty infiltration, without any sign of asymmetric impact on the anterior versus posterior RCM. However, B-glenoids with asymmetric bone loss were found to have more RCM atrophy and fatty infiltration of the infraspinatus. We identified four significant patterns of RCM degeneration and scapular shape, explaining 90.3% of their correlation. The primary mode indicates an association between combined posterior glenoid erosion and coracoid rotation with an increased infraspinatus' fatty infiltration. Interestingly, this mode was also positively correlated with posterior HHS (r = 0.46, P < 0.01). Identification of such patterns can improve the accuracy of musculoskeletal models in predicting postoperative implant failure risks.

肩袖肌肉质量与肩关节形态骨特征之间的协变:一种统计建模方法。
旋转袖肌(RCM)退变、骨形态和肱骨头半脱位(HHS)是已知的b型肩关节骨性关节炎患者解剖性全肩关节置换术失败的危险因素。然而,对这些患者的RCM不对称的理解仍然是一个积极研究的领域,包括其与其他危险因素的关系。因此,我们的目的是表征b型肩关节RCM变性的变异性,并分析其与肩胛骨形态和HHS的共变异性。首先,计算机断层扫描图像用于量化60例b型肩关节的3D RCM变性,包括肌肉萎缩和脂肪浸润,对照25例健康对照。接下来,使用先前发表的统计形状模型对b型肩胛骨的三维形状进行量化。第三,对三维HHS进行量化。利用专门的相关分析,对这些风险因素之间的协变模式进行建模。结果表明,b型肩关节的RCM退变主要以脂肪浸润为特征,对前后RCM没有任何不对称影响的迹象。然而,不对称骨丢失的b -盂有更多的RCM萎缩和脂肪浸润的下脊肌。我们确定了RCM退变和肩胛骨形状的四种显著模式,解释了它们之间90.3%的相关性。原发性模式表明联合后关节盂糜蚀和喙旋转与冈下脂肪浸润增加有关。有趣的是,这种模式也与后验HHS呈正相关(r = 0.46, P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信