Spatial-Temporal Scanning Kelvin Probe Microscopy for Evaluating Ionic Velocity in Solid-State Electrolytes.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fang Wang, Shi Cheng, Xuyang Wang, Chunlin Song, Jiangyu Li, Hongyun Jin, Boyuan Huang
{"title":"Spatial-Temporal Scanning Kelvin Probe Microscopy for Evaluating Ionic Velocity in Solid-State Electrolytes.","authors":"Fang Wang, Shi Cheng, Xuyang Wang, Chunlin Song, Jiangyu Li, Hongyun Jin, Boyuan Huang","doi":"10.1002/smtd.202401135","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state electrolytes (SSEs) with high ionic conductivity are crucial for the development of high-performance all-solid-state batteries. While a growing number of strategies based on nanoengineering are emerging to enhance the ionic conductivity of SSEs, understanding nanoscale ionic transport remains a nontrivial challenge. In this work, a simple yet effective approach is developed for in situ measuring microscopic ionic velocity in SSEs. Ionic transport under an electric field is directly captured using spatial-temporal scanning Kelvin probe microscopy (SKPM). This method reliably quantifies the microscopic ionic conductivity of SSEs, consistent with the results of macroscopic electrochemical impedance spectra, while providing nanoscale spatial resolution that is essential for comprehending ionic migration in nanostructured systems. The spatial-temporal SKPM, validated on LiZr<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> and Li<sub>1.05</sub>Zr<sub>1.95</sub>Fe<sub>0.05</sub>(PO<sub>4</sub>)<sub>3</sub>, can be further extended to other SSEs for direct visualization of ionic migration dynamics. This work contributes to the understanding of ionic transport mechanisms and paves the way for advancements in the ionic conductivity of SSEs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401135"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) with high ionic conductivity are crucial for the development of high-performance all-solid-state batteries. While a growing number of strategies based on nanoengineering are emerging to enhance the ionic conductivity of SSEs, understanding nanoscale ionic transport remains a nontrivial challenge. In this work, a simple yet effective approach is developed for in situ measuring microscopic ionic velocity in SSEs. Ionic transport under an electric field is directly captured using spatial-temporal scanning Kelvin probe microscopy (SKPM). This method reliably quantifies the microscopic ionic conductivity of SSEs, consistent with the results of macroscopic electrochemical impedance spectra, while providing nanoscale spatial resolution that is essential for comprehending ionic migration in nanostructured systems. The spatial-temporal SKPM, validated on LiZr2(PO4)3 and Li1.05Zr1.95Fe0.05(PO4)3, can be further extended to other SSEs for direct visualization of ionic migration dynamics. This work contributes to the understanding of ionic transport mechanisms and paves the way for advancements in the ionic conductivity of SSEs.

时空扫描开尔文探针显微镜评价固态电解质中的离子速度。
具有高离子电导率的固态电解质对于高性能全固态电池的发展至关重要。虽然越来越多的基于纳米工程的策略正在出现,以提高ssi的离子电导率,但了解纳米级离子传输仍然是一个不小的挑战。在这项工作中,开发了一种简单而有效的原位测量微观离子速度的方法。利用时空扫描开尔文探针显微镜(SKPM)直接捕获了电场下的离子输运。该方法可靠地量化了sse的微观离子电导率,与宏观电化学阻抗谱的结果一致,同时提供了纳米尺度的空间分辨率,这对于理解纳米结构体系中的离子迁移至关重要。在LiZr2(PO4)3和Li1.05Zr1.95Fe0.05(PO4)3上验证的时空SKPM可以进一步扩展到其他sse,以直接显示离子迁移动力学。这项工作有助于理解离子传输机制,并为进一步研究ssi的离子电导率铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信