Mechanical Stable and Ion Pump Interface Design Through Heterogeneous Interphase Layer for Dendrite-Free Sodium Metal Batteries.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xinshuang Miao, Ao Zhong, Sihang Xia, Songling Wu, Haichao Wang, Hao Li, Haoqing Ma, Yao Liu, Chao Yang, Kangning Zhao
{"title":"Mechanical Stable and Ion Pump Interface Design Through Heterogeneous Interphase Layer for Dendrite-Free Sodium Metal Batteries.","authors":"Xinshuang Miao, Ao Zhong, Sihang Xia, Songling Wu, Haichao Wang, Hao Li, Haoqing Ma, Yao Liu, Chao Yang, Kangning Zhao","doi":"10.1002/smtd.202500531","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-metal batteries (SMBs) emerge as a promising alternative to lithium-metal systems but face intrinsic challenges of unstable electrode/electrolyte interfaces and rampant dendrite growth, which compromise cyclability and safety. Here, a multifunctional heterogeneous interphase layer (IMS-Na) with an ion pumping function on metallic sodium is constructed. This is enabled via an in situ reaction of Sb<sub>2</sub>Se<sub>3</sub> powder with Na at room temperature by forming a Na<sub>3</sub>Sb/Na<sub>2</sub>Se hybrid structure as an artificial SEI layer. This artificial SEI layer synergizes ion pumping Na<sub>3</sub>Sb with high ionic conductivity (adsorption energy: -1.31 eV, migration barrier: 0.49 eV) and mechanically stable Na<sub>2</sub>Se with electronic insulation (bandgap: 2.11 eV) and mechanical robustness (Young's modulus: 60.63 GPa). The ion pumping Na<sub>3</sub>Sb homogenizes the \"hot spot\" to suppress dendrite formation while the mechanically stable Na<sub>2</sub>Se ensures the durability of the interface, which synergically enables dendrite-free Na deposition. As a result, the IMS-Na anode achieves ultralow polarization (30 mV) and unprecedented cycling stability (1535 h at 0.5 mA cm<sup>-2</sup>) in carbonate electrolytes. Paired with a Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode, the full cell delivers long-term stability (1400 cycles) and high-rate capacity (102 mAh g<sup>-1</sup> at 2 A g<sup>-1</sup>). This work establishes a design paradigm for artificial SEI layers, balancing ionic transport, electronic insulation, and mechanical resilience, critical for advancing high-energy-density metal batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2500531"},"PeriodicalIF":10.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202500531","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-metal batteries (SMBs) emerge as a promising alternative to lithium-metal systems but face intrinsic challenges of unstable electrode/electrolyte interfaces and rampant dendrite growth, which compromise cyclability and safety. Here, a multifunctional heterogeneous interphase layer (IMS-Na) with an ion pumping function on metallic sodium is constructed. This is enabled via an in situ reaction of Sb2Se3 powder with Na at room temperature by forming a Na3Sb/Na2Se hybrid structure as an artificial SEI layer. This artificial SEI layer synergizes ion pumping Na3Sb with high ionic conductivity (adsorption energy: -1.31 eV, migration barrier: 0.49 eV) and mechanically stable Na2Se with electronic insulation (bandgap: 2.11 eV) and mechanical robustness (Young's modulus: 60.63 GPa). The ion pumping Na3Sb homogenizes the "hot spot" to suppress dendrite formation while the mechanically stable Na2Se ensures the durability of the interface, which synergically enables dendrite-free Na deposition. As a result, the IMS-Na anode achieves ultralow polarization (30 mV) and unprecedented cycling stability (1535 h at 0.5 mA cm-2) in carbonate electrolytes. Paired with a Na3V2(PO4)3 cathode, the full cell delivers long-term stability (1400 cycles) and high-rate capacity (102 mAh g-1 at 2 A g-1). This work establishes a design paradigm for artificial SEI layers, balancing ionic transport, electronic insulation, and mechanical resilience, critical for advancing high-energy-density metal batteries.

无枝晶钠金属电池非均质界面层机械稳定性及离子泵界面设计。
钠金属电池(smb)是锂金属系统的一个有前途的替代品,但面临着电极/电解质界面不稳定和猖獗的枝晶生长的内在挑战,这些挑战会影响可循环性和安全性。本文构建了一种具有离子泵送功能的多功能异质间相层(IMS-Na)。这是通过在室温下将Sb2Se3粉末与Na原位反应形成Na3Sb/Na2Se杂化结构作为人工SEI层来实现的。该人工SEI层协同离子泵送Na3Sb具有高离子电导率(吸附能:-1.31 eV,迁移势垒:0.49 eV)和机械稳定的Na2Se具有电子绝缘性(带隙:2.11 eV)和机械稳健性(杨氏模量:60.63 GPa)。离子泵送Na3Sb使“热点”均匀化以抑制枝晶的形成,而机械稳定的Na2Se确保了界面的耐久性,从而协同实现了无枝晶的Na沉积。因此,IMS-Na阳极在碳酸盐电解质中实现了超低极化(30 mV)和前所未有的循环稳定性(在0.5 mA cm-2下1535小时)。与Na3V2(PO4)3阴极配对,全电池提供长期稳定性(1400次循环)和高倍率容量(在2 a g-1下102 mAh g-1)。这项工作建立了人工SEI层的设计范例,平衡离子传输、电子绝缘和机械弹性,这对推进高能量密度金属电池至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信