Jake A. Odger, Matthew J. Anderson, Thomas P. Carton, Bao Nguyen, Kevin Foote and Michael J. Waring
{"title":"Improvements in micelle promoted DNA-encoded library synthesis by surfactant optimisation†","authors":"Jake A. Odger, Matthew J. Anderson, Thomas P. Carton, Bao Nguyen, Kevin Foote and Michael J. Waring","doi":"10.1039/D5OB00864F","DOIUrl":null,"url":null,"abstract":"<p >DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki–Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 28","pages":" 6745-6754"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00864f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
DNA-encoded libraries are increasingly important in hit identification at the early stage of the drug discovery process. The approach relies on efficient methods for synthesis of drug-like compounds attached to coding DNA sequences. Many reactions employed for library synthesis are inefficient and result in significant DNA-damage, incomplete conversion and the formation of side products, which compromise the fidelity of the resulting library. We have developed a wide array of reactions that are promoted by the micelle-forming surfactant TPGS-750-M that address these issues and lead to improved efficiency. Here we demonstrate further improvements to key reactions Suzuki–Miyaura coupling, reductive amination and amide coupling by surfactant screening using principal component-based surfactant maps which lead to improved conversion for problematic substrates. This work demonstrates the utility of surfactant maps in reaction optimisation for DNA-encoded library synthesis and leads to further improvements in these important transformations.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.