Dhyanjyoti D. Nath, Timothy R. Younkin, Jerome Guterl, Mark S. Shephard, Onkar Sahni
{"title":"A GPU-Accelerated 3D Unstructured Mesh Based Particle Tracking Code for Multi-Species Impurity Transport Simulation in Fusion Tokamaks","authors":"Dhyanjyoti D. Nath, Timothy R. Younkin, Jerome Guterl, Mark S. Shephard, Onkar Sahni","doi":"10.1002/ctpp.202400073","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents the multi-species global impurity transport capability developed in a GPU-accelerated fully 3D unstructured mesh-based code, GITRm, to simultaneously track multiple impurity species and handle interactions of these impurities with mixed-material surfaces. Different computational approaches to model particle-surface interaction or surface response have been developed and compared. Sheath electric field is taken into account by employing a fast distance-to-boundary calculation, which is carried out in parallel on distributed or partitioned meshes on multiple GPUs without the need for any inter-process communication during the simulation. Several example cases, including two for the DIII-D tokamak, that is, one with the SAS-V divertor and the other with the collector probes, are used to demonstrate the utility of the current multi-species capability. For the DIII-D probe case, the capability of GITRm to resolve the spatial distribution of particles in localized regions, such as diagnostic probes, within non-axisymmetric tokamak geometries is demonstrated. These simulations involve up to 320 million particles and utilize up to 48 GPUs.</p>\n </div>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202400073","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the multi-species global impurity transport capability developed in a GPU-accelerated fully 3D unstructured mesh-based code, GITRm, to simultaneously track multiple impurity species and handle interactions of these impurities with mixed-material surfaces. Different computational approaches to model particle-surface interaction or surface response have been developed and compared. Sheath electric field is taken into account by employing a fast distance-to-boundary calculation, which is carried out in parallel on distributed or partitioned meshes on multiple GPUs without the need for any inter-process communication during the simulation. Several example cases, including two for the DIII-D tokamak, that is, one with the SAS-V divertor and the other with the collector probes, are used to demonstrate the utility of the current multi-species capability. For the DIII-D probe case, the capability of GITRm to resolve the spatial distribution of particles in localized regions, such as diagnostic probes, within non-axisymmetric tokamak geometries is demonstrated. These simulations involve up to 320 million particles and utilize up to 48 GPUs.