Spatial Isolation of Single Copper(I) Sites for Cascade Enzyme-Like Catalysis and Simultaneous Ferroptosis/Cuproptosis Boosted Immunotherapy

IF 22.5
Yuanyuan Zhang, Shengnan Ya, Jingnan Huang, Yangyang Ju, Xueyang Fang, Xinteng Ouyang, Qingdong Zeng, Xinyao Zhou, Xiyun Yan, Guohui Nie, Kelong Fan, Bin Zhang
{"title":"Spatial Isolation of Single Copper(I) Sites for Cascade Enzyme-Like Catalysis and Simultaneous Ferroptosis/Cuproptosis Boosted Immunotherapy","authors":"Yuanyuan Zhang,&nbsp;Shengnan Ya,&nbsp;Jingnan Huang,&nbsp;Yangyang Ju,&nbsp;Xueyang Fang,&nbsp;Xinteng Ouyang,&nbsp;Qingdong Zeng,&nbsp;Xinyao Zhou,&nbsp;Xiyun Yan,&nbsp;Guohui Nie,&nbsp;Kelong Fan,&nbsp;Bin Zhang","doi":"10.1002/EXP.20240275","DOIUrl":null,"url":null,"abstract":"<p>Nanozyme-based immunogenic cell death (ICD) inducers that effectively induce a strong immune response via enzyme-like process have attracted great attention, but how to ensure controllable active sites and maximize site utilization remains a problem. Here, we report a structurally well-defined and highly functional single-site copper(I) nanomodulators termed CuNTD, constructed by precisely anchoring atomically dispersed self-assembly S-Cu(I)-S sites onto a two-dimensional Ti<sub>3</sub>C<sub>2</sub> surface. Leveraging Cu<sup>+</sup> with a higher catalytic efficiency than Cu<sup>2+</sup>, CuNTD generates reactive oxygen species (ROS) storms through photothermal-enhanced cascade catalysis, further inducing mitochondrial dysfunction, ferroptosis and cuproptosis. Multifunctional CuNTD triggers strong ICD through cascade-regulatory pathways of photothermal-amplified ROS storms, cuproptosis and ferroptosis, effectively promoting dendritic cell maturation while reducing monotherapies side effects and resistance. In vivo, CuNTD combined with FDA-approved immunoadjuvants significantly prolong the survival of mice. With its demonstrated biosafety and high efficiency as an ICD inducer, this study provides a promising framework for advancing augmented tumor immunotherapy with significant clinical potential.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"5 3","pages":""},"PeriodicalIF":22.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20240275","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20240275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanozyme-based immunogenic cell death (ICD) inducers that effectively induce a strong immune response via enzyme-like process have attracted great attention, but how to ensure controllable active sites and maximize site utilization remains a problem. Here, we report a structurally well-defined and highly functional single-site copper(I) nanomodulators termed CuNTD, constructed by precisely anchoring atomically dispersed self-assembly S-Cu(I)-S sites onto a two-dimensional Ti3C2 surface. Leveraging Cu+ with a higher catalytic efficiency than Cu2+, CuNTD generates reactive oxygen species (ROS) storms through photothermal-enhanced cascade catalysis, further inducing mitochondrial dysfunction, ferroptosis and cuproptosis. Multifunctional CuNTD triggers strong ICD through cascade-regulatory pathways of photothermal-amplified ROS storms, cuproptosis and ferroptosis, effectively promoting dendritic cell maturation while reducing monotherapies side effects and resistance. In vivo, CuNTD combined with FDA-approved immunoadjuvants significantly prolong the survival of mice. With its demonstrated biosafety and high efficiency as an ICD inducer, this study provides a promising framework for advancing augmented tumor immunotherapy with significant clinical potential.

Abstract Image

级联酶样催化和同时铁下垂/铜下垂的单铜(I)位点的空间分离促进了免疫治疗
基于纳米酶的免疫原性细胞死亡(ICD)诱导剂通过酶样过程有效诱导强烈的免疫应答引起了人们的广泛关注,但如何确保活性位点可控并最大限度地利用活性位点仍然是一个问题。在这里,我们报告了一种结构明确且功能强大的单位点铜(I)纳米调制剂,称为CuNTD,通过精确地将原子分散的自组装S-Cu(I)-S位点锚定在二维Ti3C2表面上构建而成。CuNTD利用催化效率高于Cu2+的Cu+,通过光热增强级联催化产生活性氧(ROS)风暴,进一步诱导线粒体功能障碍、铁下沉和铜下沉。多功能CuNTD通过光热放大的ROS风暴、铜下沉和铁下沉的级联调控途径触发强ICD,有效促进树突状细胞成熟,同时减少单一疗法的副作用和耐药性。在体内,CuNTD联合fda批准的免疫佐剂可显著延长小鼠的生存期。由于其作为ICD诱导剂的生物安全性和高效率,该研究为推进增强肿瘤免疫治疗提供了一个有希望的框架,具有重要的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信