Xuekun Cheng, Yufeng Zhou, Guomo Zhou, Yongjun Shi
{"title":"Biochar-Based Compound Fertilizers Enhances Carbon Sequestration and Mitigates Greenhouse Gas Emissions in Moso Bamboo Forests","authors":"Xuekun Cheng, Yufeng Zhou, Guomo Zhou, Yongjun Shi","doi":"10.1111/gcbb.70056","DOIUrl":null,"url":null,"abstract":"<p>Moso bamboo (<i>Phyllostachys edulis</i>) forests play a significant role in carbon sequestration, but their sustainability is threatened by nutrient depletion and greenhouse gas (GHG) emissions. This study aims to evaluate fertilization strategies that optimize both economic returns and environmental protection in these forests. A 1-year field experiment (three treatments with four replicates) was conducted to examine the effects of biochar and chemical fertilizer application on soil carbon and nitrogen pools, microbial community composition, ecosystem carbon stock, and GHG fluxes in a subtropical Moso bamboo forest. Biochar-based compound fertilizer application increased soil organic carbon (SOC) by 12.6%, reduced microbial residual carbon (MRC) by 8.2%, and enhanced CH<sub>4</sub> absorption by 22.4%. In addition, it decreased N<sub>2</sub>O emissions by 16.5%. In contrast, chemical fertilizer increased short-term biomass productivity (24.8%) but resulted in higher CO<sub>2</sub> and N<sub>2</sub>O emissions. Neither treatment significantly affected microbial α-diversity, but both altered microbial community composition, particularly fungi, with biochar favoring beneficial fungal species. Biochar-based compound fertilizer is a promising strategy for enhancing carbon sequestration and mitigating GHG emissions in Moso bamboo forests. These findings highlight biochar's potential to improve soil health and contribute to more sustainable bamboo forest management, offering valuable insights for climate change mitigation strategies.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 7","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70056","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Moso bamboo (Phyllostachys edulis) forests play a significant role in carbon sequestration, but their sustainability is threatened by nutrient depletion and greenhouse gas (GHG) emissions. This study aims to evaluate fertilization strategies that optimize both economic returns and environmental protection in these forests. A 1-year field experiment (three treatments with four replicates) was conducted to examine the effects of biochar and chemical fertilizer application on soil carbon and nitrogen pools, microbial community composition, ecosystem carbon stock, and GHG fluxes in a subtropical Moso bamboo forest. Biochar-based compound fertilizer application increased soil organic carbon (SOC) by 12.6%, reduced microbial residual carbon (MRC) by 8.2%, and enhanced CH4 absorption by 22.4%. In addition, it decreased N2O emissions by 16.5%. In contrast, chemical fertilizer increased short-term biomass productivity (24.8%) but resulted in higher CO2 and N2O emissions. Neither treatment significantly affected microbial α-diversity, but both altered microbial community composition, particularly fungi, with biochar favoring beneficial fungal species. Biochar-based compound fertilizer is a promising strategy for enhancing carbon sequestration and mitigating GHG emissions in Moso bamboo forests. These findings highlight biochar's potential to improve soil health and contribute to more sustainable bamboo forest management, offering valuable insights for climate change mitigation strategies.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.